IPRO 323: Modeling of Building-Integrated Wind Turbine Modules

Dietmar Rempfer & Candace Wark Dept. of Mechanical, Materials & Aerospace Engineering Dept. of Applied Mathematics Illinois Institute of Technology Chicago, IL

Wind Energy Symposium, IIT - July 20, 2011

IPRO Program Team Mission Statement

Provide IIT students with an exemplary experience in making contributions as part of a high-performance multidisciplinary team by applying professional methods in a rigorous fashion to develop viable solutions that create value

This IPRO:

Bring together students from Aerospace, Mechanical, and Electrical Engineering to work, collectively, on a practical wind energy design problem

Team Organization

JorCFDTaylor DizonJcNyla HusainJose Amodio LeonAntonio GonnellaTom McManus

Leader: Antonio Gonnella *Wind Tunnel* Jonathan Swanson Nyla Husain Jose Amodio Leon Antonio Gonnella Tom McManus Lucas Pfiffner Taylor Dizon

Architectural R&D

Corey Bushcott Edward Ciciora Thiago Jardim Jaeyoung Kim Kent Hoffman Research Edward Ciciora Corey Bushcott Thiago Jardim Lucas Pfiffner Jaeyoung Kim Kent Hoffman

Building-Integrated Wind Turbine Modules Team Purpose and Goals

The long-term goals of this IPRO are:

- Optimization of the power output of a small-scale wind turbine system
- Design and development of a custom turbine system
- Integration of the system into buildings and cityscape

Building-Integrated Wind Turbine Modules Team Purpose and Goals

The team for this spring's IPRO was working on the following semester objectives:

- Measure the effects of surface shape on power output
- Digitally model a building with the surface design
- Estimate the costs versus the benefits

Building Integrated Wind Turbine Modules

Spring 2011 Focus: Surface Design for Building Integration

- Develop a surface shape that maximizes the output of the turbine
- Turbine is simplified to a principle model: Perforated Plate
- Perforated plate simulates the effects of a wind turbine

Computational Fluid Dynamics

Wind Tunnel Team Accomplishments

Wind tunnel instrumentation and software
 Methods for measuring velocity and pressure distributions

Wind Tunnel Set-Up

Wind Tunnel Set-Up

Architectural R&D Team Accomplishments

- Modeled buildings
- Estimated cost
- Estimated power

Building Power Consumption Estimation

- Mid-sized office building uses 167 kWh/m² annually
- Initial tests estimate:
 - 67.5 kWh/m² annually for 5 m/s
 - 536.6 kWh/m² annually for 10 m/s

Cost Estimation

Tubular aluminum frame	
Approx. 45' of ³ /4" sq. tubing	\$50
Welded	
\$50	
Molded plastic upper	\$500/10
Foam insulation	\$20
Turbine body	
Solid paddle	\$10
Solid savonius	
\$20	
Membrane paddle/savonius	\$30
Magnetic generator	
\$100	
Transformer	\$65

Future Work

Optimize power output
Test multiple surface designs
Turbine considerations
Integrate system

