

Integration of PHEV with Wind Energy

IPRO 311 – Integration of Plug-in Hybrid Electric Vehicles and Renewable Energy Systems Dr. Alireza Khaligh Fall 2010

Multidisciplinary Interprofessional (IPROSM) Course

- Engaging multidisciplinary teams of students in semesterlong undergraduate projects based on real-world topics.
- Integrating ethics as an independent part of the project.
- Teams may include 5 to 15 students
 - o All academic levels
 - Across professional programs:
 - Engineering
 - Science
 - Business
 - Law
 - Psychology
 - Design
 - Architecture

Multidisciplinary Interprofessional (IPROSM) Course

- Integration of both
 - Vertical (bridging academic levels)
 - Horizontal (bridging professional programs) dimensions
- Stimulating student interaction across the boundaries of individual disciplines and experiences
- Power and energy engineering-oriented students:

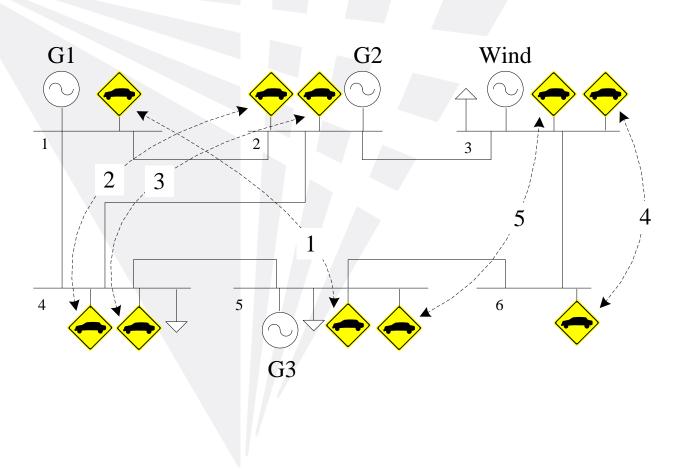
Appreciation for non-technical considerations

Other professions:

Greater insight concerning research and technology development

Integration of PHEV with Wind Energy

- Investigating the effect of integrating 20% of wind energy in current power system in terms of operational cost
- Supplementing additional power demand of electric power network through integration of PHEVs
- Facilitating Vehicle-to-Grid (V2G) integration by taking advantage of Energy Storage System (ESS) of PHEVs


Team Roster

- Team Advisor: Dr. Alireza Khaligh
- Team leader: Malik Ajose, Joeseph Krause
 - James Lee: Electrical Engineering, Optimal cost management
 - Peter Ryszkiewicz: Electrical Engineering, Driving habit and ESS
 - Malik Ajose: Architecture, Charging PHEVs and battery life
 - George Pop: Architecture, Operational cost/wind energy curtailment
 - Robert Veitch: Computer Science, Optimal cost management
 - Byron Enriquez: Mechanical Engineering, Operational cost/wind energy curtailment
 - Joseph Krause: Mechanical Engineering, Smart grid interaction of PHEVs & wind state of the charges requirements of PHEVs
 - Joseph Charles: Mechanical Engineering, Driving habit and ESS

Integrating Electric Vehicles and Wind Generation in

Electric Power Systems

Expected Outcomes

- Reduce operational cost of the electric power system
- Reduce the peak demands
- Reduce CO2 emission, eco friendly
- Take full advantage of utilizing wind energy
 (Using wind energy at night to charge PHEV)