SMART TRANSMISSION MAKING A SMART GRID SMARTER

At IIT on September 30, 2010 Paul McCoy President, Trans-Elect Development Company, LLC Smart Transmission Is The Intersection Of Four Elements

- The physical infrastructure of the system
- Advanced information technologies
 - Measurement, analytics, automation, controls
- High-speed bi-directional communication
 - Control commands
 - Hierarchical communication of data
- Advanced components
 - Superconductors
 - Energy storage
 - Power electronics (FACTS devices)
 - HVDC (point to point and advanced multi-terminal)

Impacts On Renewable Generation

- Continued investment in basic transmission infrastructure is still needed and is essential for renewable generation access
- Deployment of advanced technology is critical to properly integrate new forms of generation into the grid reliably and at lower cost
- □ This needs to be done reasonably fast
 - We need to stop the practice of every transmission owner doing their own alpha and beta testing (other industries don't do this)

Section 1301 Of The Energy Independence & Security Act of 2007

- Increased use of digital information and controls technology to improve the reliability, efficiency and security of the grid
- The dynamic optimization of grid operations, with full cyber-security
- Development of interoperability standards, including the infrastructure serving the grid ("plug and play")

Technology

Communication, Sensing and Measurement

- Many owners investing in high-bandwidth communication networks
 - Collect network information
 - Communication, command and control between power plants, breakers, relays, sensors and the control center
- Advanced sensing
 - Synchrophasor technology is an example
 - 30 samples per second! Not once every four seconds

Technology Data Management

- New sensing equipment and high-broadband communication are producing mountains of raw data
 - Can overwhelm the system operators
 - Therefore the industry is deploying hierarchical data management
 - Data initially stored at the substation
 - Critical information sent immediately
 - Processed with advanced control room tools to present the operator with the most critical information the nuclear approach
- Data ultimately archived for post-operation review and to assist asset management decisions

Technology Analytics

- All of this technology is no good if we can't manage it in real time
- The modern transmission operator is using the following tools in the control room
 - State estimation
 - Topology processors
 - SCED and SCUC
 - Contingency analysis

Technology Analytics (cont.)

- Transmission operators are likely to be using the following tools in the near future
 - Advanced operator decision support tools
 - Think "Boeing 777" (It diagnoses its own problems and suggests the fix to the pilots)
 - Tiered information including "drill down"
 - Automatic data "hiding" during severe events
 - Congestion management visualization
 - Wind forcasting tools (Texas and Midwest events)
 - Synchrophasor displays
 - Automatic remote "resetting" of protective relaying to match the topology of the network post-contingency
 - And more to come

Techology Advanced Components

Superconductors

- Ideal for urban environments
- Fault limiters
- Voltage Source Converter HVDC
 - Highly controllable
 - Independent real and reactive power control
 - Power reversals without polarity reversal
 - Can operate at zero power flow (conventional HVDC can't)
 - Ratings of modules now up to 800-1000 MW
 - Can help stabilize the AC network
- Multi-terminal VSC HVDC
 - Multiple injection points and multiple withdrawals
 - Ideal for wind farm collection over distance (or offshore)
 - European Supergrid will likely use this
 - US adoption likely

Storage – Unlocking The Full Potential Of Renewable Generation

The "Missing Link" – multiple technologies will be deployed

- Ultimately a critical technology
- Bulk storage temporal energy shifting
 - Pumped hydro, CAES and large batteries
- Load following, black start and reserve sharing
 - Batteries and super capacitors
- Frequency regulation
 - Flywheels
 - Batteries

- Smart transmission expected to provided many benefits
 - Better reliability
 - Increased system throughput
 - More efficient generator fuel use
 - Greater use and penetration of renewable resources
 - More effective use of storage
 - Fosters an improved wholesale market
- □ How will we know we're "there"?????

Summary (cont)

- First of all, this is a journey and not a final destination
- However, we will know we have crossed the threshold into a full transmission smart grid environment when...
 - Our tools and analytics can pinpoint problems and proactively suggest solutions/corrective actions for most events
 - The human operator "retreats" from hands-on operation of the grid during most hours of the day
- Finally, the "new world" will demand operators and engineers who are facile with the technology
- Simulators will take on even greater importance

Thank You!

Questions?