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Allocation of Hourly Reserve Versus Demand
Response for Security-Constrained Scheduling

of Stochastic Wind Energy
Cem Sahin, Member, IEEE, Mohammad Shahidehpour, Fellow, IEEE, and Ismet Erkmen

Abstract—This paper presents a stochastic method for the
hourly scheduling of optimal reserves when the hourly forecast
errors of wind energy and load are considered. The approach
utilizes the stochastic security-constrained unit commitment
(SCUC) model and a two-stage stochastic programming for the
day-ahead scheduling of wind energy and conventional units with

contingencies. The effect of aggregated hourly demand
(DR) response is considered as a means of mitigating transmis-
sion violations when uncertainties are considered. The proposed
mixed-integer programming (MIP) model applies the Monte
Carlo method for representing the hourly wind energy and system
load forecast errors. A 6-bus, 118-bus, and the Northwest region
of Turkish electric power network are considered to demonstrate
the effectiveness of the proposed day-ahead stochastic scheduling
method in power systems.

Index Terms—Demand response, hourly reserves, load and wind
forecast errors, random contingencies, stochastic security-con-
strained unit commitment (SCUC), wind energy.

NOMENCLATURE

Indices:

Index of load.

Index of nonwind energy generating units.

Index of DRPs.

Index of scenarios.

Index of time period (hour).

Index of DR provider bid segments.

Index of wind energy units.

Dimensions:

Number of contingencies.

Number of system loads.

Number of DRPs.

Number of nonwind generating units.
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Total number of scenarios including contingencies
and wind, load forecast error scenarios.

Number of hours.

Number of bidding segments.

Number of wind energy units.

Constraints:

Generalized network constraints in base case and
wind, load scenarios.

Variables:

Cost of scheduling DRR by DRP .

Cost of utilizing scheduled DRR by DRP .

Scheduled DR by DRP at time .

Deployed DR by DRP at time in scenario .

Bid-based energy cost function of unit .

Bid-based cost function of unit regulation
reserve.

Bid-based cost function of unit spinning reserve.

Commitment state.

Power generation.

Power generation in regulation interval.

Wind generation of unit at time and scenario .

Curtailed wind generation of unit at time and
scenario .

Regulation reserve.

Scheduled regulation-down reserve.

Deployed regulation reserve of unit at time in
scenario .

Scheduled regulation-up reserve.

Deployed spinning reserve.

Scheduled spinning-down reserve.

Deployed spinning reserve by unit at time in
scenario .

Scheduled spinning-up reserve.

Shutdown cost.
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Startup cost.

Binary variable (1 if point of offer package DRP
at time in scenario is utilized, 0 otherwise).

Binary variable (takes the value 1 if point of
offer package DRP at time is scheduled, 0
otherwise).

Startup indicator (1 if unit is started up at time ).

Shut down indicator (1 if unit is shut down at
time ).

Speed of wind energy unit at hour in scenario
.

Constants:

Area swept by the rotor of wind energy unit .

Power coefficient of wind energy unit .

Scheduling cost of point of offer package DRP
at time .

Cost of 1-MWh wind power curtailment from
wind generator at time .

Ramp down limit.

Deployment cost of point of scheduled offer by
DRP at time .

Involuntary load shedding at load .

Minimum down time for unit .

Minimum up time for unit .

Probability of scenario of wind and load
uncertainty.

Power demand at load .

Maximum power generation of unit .

Minimum power generation of unit .

th discrete DRR value of the bid of DRP .

Air density at region where wind unit is located.

Capacity cost of reserve type for unit .

Number of hours unit has been offline initially.

Number of hours unit has been online initially.

Cut-in wind speed of wind energy unit .

Cut-out wind speed of wind energy unit .

Rated wind speed of wind energy unit .

Value of lost load at load .

Ramp up limit.

Allowed system load imbalance for the
contingency in scenario .

Abbreviations:

DR Demand Response.

DRR Demand Response Reserve.

DRP Demand Response Provider.

I. INTRODUCTION

A S THE renewable energy integration in power systems
evolves, the cost of supplying ancillary services becomes

more prevalent with respect to operating decisions [1]. Wind en-
ergy is the fastest growing type of renewable energy due to its
clean and indigenous nature. On the other hand, the installed
wind capacity is not readily dispatchable due to its intermit-
tent nature [2]–[7]. The effect of wind energy forecast errors is
considered in the network-constrained market-clearing problem
using a two-stage stochastic programmingmodel in [8]. The first
contribution of this paper is that it calculates the hourly reserves
for addressing load and wind energy forecast errors in a sto-
chastic framework while considering contingencies in
power networks.
DR is a tariff that would encourage lower electricity con-

sumptions [9]–[11]. DR can be motivated by either providing
end-users with time-varying rates or giving incentives to such
costumers to reduce loads at times when the electricity market
price is high or the system reliability is at stake. The time-
varying rates require an advanced measurement and commu-
nication infrastructure in order to convey real-time prices to
end-use consumers, while the incentives are more suitable for
a faster adaptation of electricity markets. DR provides financial
incentives to customers who also benefit from lower hourly de-
mands [12]–[16]. The second contribution of this paper would
model the hourly DR in a discrete form in order to reflect the
market behavior in an uncertain environment.
We propose a stochastic model in which wind and load fore-

cast errors are addressed through Monte-Carlo-based scenarios
in a two-stage stochastic programming model. The component
outages are considered in an contingency model. To ad-
dress the computation complexity, the problem is decomposed
into a master problem to solve the UC and reserve schedules,
and subproblems for considering the network security, for pre-
selected contingencies, and load and wind forecast error
scenarios. At the same time, DR is considered for managing
hourly violations and reducing the cost of supplying the load.
Load shedding is utilized whenever its contribution to lowering
the stochastic cost is higher than that of allocating additional
generating reserves. The proposed method would be used by
an ISO or a vertical integrated utility to address the stochastic
cost of security. The stochastic cost of security is defined as the
difference between the scheduling cost of deterministic secu-
rity-constrained unit commitment (SCUC) and that of consid-
ering uncertainties.
The rest of the paper is organized as follows. Mathematical

models of DR and simulation of wind and load forecast error
are discussed in Section II. The energy and A/S market clearing
problem is introduced in Section III. Case studies are given in
Section IV. Section V concludes this paper.
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II. DR, LOAD, AND WIND ENERGY MODELS

A. Demand Response Model

Demand response is formulated using a mixed-integer pro-
gramming (MIP) formulation to fit the SCUC model. The bid
should be in a discrete form since the demand response provider
(DRP) represents an aggregated DR of end-users. Equations (1)
and (2) in the following represent the scheduled demand re-
sponse reserve (DRR) of DRP at the time interval and the
related capacity cost. The value of would be greater than the
minimum amount determined by the ISO. Equations (3) and (4)
give the actual DRR utilized by DRP in scenario at time
, and the associated energy cost. A graphical representation of
(1)–(5) is given in Fig. 1.

(1)

(2)

(3)

(4)

(5)

In Fig. 1, “ ” denotes a schedule (i.e., ,
and ), and “ ” denotes the discrete DR offer deployed
in scenario (i.e., and ).

B. Wind Energy and Load Simulation

This section discusses the modeling of forecast error sce-
narios for wind energy and system load which will be used in
Monte Carlo simulations. The nonlinear wind speed to power
conversion curve is given in (6), shown at the bottom of the
page, and is given as an input to the algorithm. The wind
power generation is subject to (7), shown at the bottom of
the page. The auto-regressive moving average (ARMA)-based
approach [17] provides scenarios for representing wind energy
forecast errors. The wind energy forecast errors are simulated
using ARMA series. The obtained ARMA series is sampled in

Fig. 1. Discrete DR bid scheduling and deployment.

order to obtain the forecast errors at each time step in each sce-
nario . The corresponding available wind power is obtained via
(6). The system load forecast error at time is subject to a normal
distribution , where is the forecasted system
load at time and is the load volatility. The system load dis-
tribution is sampled for scenario at time . The autocorrelation
of the load forecast error model is assumed to be zero. The wind
and load uncertainties are assumed independent.

III. SECURITY-CONSTRAINED WIND ENERGY SCHEDULING

A. Objective Function

SCUC is modeled as an optimization problem for calculating
the hourly unit commitment schedule at minimum production
cost without compromising the system reliability. The regula-
tion reserve is considered for following the short-term varia-
tions in the hourly customer demand or the scheduled gener-
ation, in order to maintain the system frequency within a per-
missible range. Spinning reserve is the unloaded generating ca-
pacity that can ramp up/down in 10 min. DR is assumed to be
in the class of spinning reserves [1]. There are four terms in the
SCUC objective function, as shown in (8), at the bottom of the
next page.
The first term is composed of base case generation and re-

serve costs, and startup and shutdown costs. The second term is
the capacity allocation cost corresponding to demand response.
The third term is the cost of base case wind energy curtailment.
The last term is the expected cost of deployment of regulation
and spinning reserves, cost of deployment of DR reserves, cost
of involuntary load shedding, and cost of wind curtailment for
wind and load forecast scenarios. The scenarios to NC

(6)

(7)
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represent contingencies and to NS represent
the wind and load forecast error scenarios.
We use a two-stage stochastic programming with re-

course [18] in which the first stage variables are commitment
states , base case generations , wind cur-
tailments , and scheduled regulation and spinning
reserves , and DRPs at hour

. The second stage variables are scenario power gener-
ations , deployed regulation and spinning
reserves and deployed DRPs , wind
curtailments , and involuntary load shedding
for scenario and hour .
The first stage variables are determined prior to the realization

of uncertainties. The objective function is subject to the base
case, contingencies, and wind and load forecast error sce-
nario constraints in (9)–(20). The contingencies would
only apply to the base case. The cost of deploying reserves for
the contingencies is not considered in the objective func-
tion since the algorithm considers such contingencies as con-
straints and guarantees the scheduling of necessary generating
reserves to respond to the contingencies without shedding
any loads. Wind and load forecast errors are considered in sce-
narios ( to NS) for scheduling the hourly reserves.

B. Base Case Constraints

The power balance equation for the base case is given in (9).
Load shedding is not allowed for the base case, since the avail-
able generation capacity would utilize the load.

(9)

Unit generation and reserve constraints and wind power
curtailment

(10)

Ramp up and down limits

(11)

Minimum on/off time limits

(8)
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(12)

Fuel and emission limits of thermal units can be added as in
[19]. The generalized network constraints refer to network con-
straints in the base case and scenarios [20]

(13)

C. Contingency and Wind-Load Scenario Constraints

Here (14) and (15) indicate that the system load in scenario
is supplied by generation, reserves, DRRs, and involuntary load
shedding

(14)

(15)

for every if generator is on outage at scenario . The
deployed reserves and involuntary load shedding in scenario
are determined based on the scheduled generation capacities.
The wind energy delivery in scenario at time is limited by
the available wind generation

(16)

The involuntary load shedding variables are set to zero for the
first iteration of contingency calculations so that con-
sumers can utilize all available generation resources. However,
if a few scenarios remain infeasible, the involuntary load shed-
ding will be made available in the following iterations as an op-
tion for mitigating the scenario violations. The ramp limit for
nonwind energy units in scenario is

(17)

Fig. 2. Flowchart of the proposed scheduling algorithm.

Once a contingency occurs, the system load is defined in (18)
as the total load minus the allowable system load imbalance .
The amount of system load imbalance is defined by the type of
the contingency for an acceptable range of frequency changes
[21]. The regulation reserve is considered in (18) and (19) for
supplying the load in contingencies

(18)

(19)

The network constraints in scenario are represented by

(20)

If there is a line outage in scenario , (20) will incorporate the
required changes in generator and load incidence matrices and
the corresponding line flows [22].

IV. PROPOSED SOLUTION METHODOLOGY

The proposed MIP problem is represented by the objective
function (8), subject to constraints (9)–(20). For large systems
withmany possible contingencies andwind and load forecast er-
rors, the problem might be intractable due to the increased size
of constraints and variables. Therefore, we resort to decomposi-
tion as shown in Fig. 2. The algorithm depicts the application of
Benders decomposition to the solution of the proposed sched-
uling problem.
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Fig. 3. One-line diagram for six-bus system.

The master UC problem includes first- and second-stage vari-
ables described in Section III-A plus the network cuts (21) for
the base case and scenarios

(21)

The dc power network subproblems consider the master
problem solution to detect flow violations and send cuts to the
master UC problem as necessary [20].

V. CASE STUDIES

The proposed algorithm is applied to a six-bus system to cap-
ture the essential characteristics of the algorithm, and to the
modified IEEE-118 bus system to assess the performance of the
proposed solution. The method is also applied to the northwest
region of the Turkish electric power market.

A. Six-Bus System

The six-bus system data are given in [3] in which a wind en-
ergy unit with a maximum power output of 20 MW is added at
bus 6. The one-line diagram of the system is given in Fig. 3.
The system has three thermal units, four transmission lines, two
tap-changing transformers, and one phase shifter for MW con-
trol. The generation units from cheapest to most expensive are
G1, G2, and G3. The regulation reserve prices are 14, 13, and
11 $/MW, spinning reserve prices are 11, 10, and 8 $/MW for
three units, respectively. Flow limits of lines are 200, 150, 150,
100 MW for lines 1–2, 1–4, 2–4, 5–6, respectively.
DRP bids include three discrete points with of 1.8, 3.6, and

5.4 MW, and of 10, 13, and 16 $/MW, respectively, at each
time interval. The deployment cost is 10 $/MW and the
VOLL is 450 $/MWh at each load bus. The scenario reduction
tool of the General AlgebraicModeling System (GAMS) is used
in which the reduction method is set to the Mix of Fast Back-
ward/Forward methods [23]. Initially there were 1500 Monte
Carlo scenarios with even probabilities (1/1500) which are re-
duced to 10 scenarios with a relative distance of 75%. The rel-
ative distance would be 70% and 83% when the Monte Carlo
scenarios are reduced to 50 and 9 scenarios, respectively [24].
The wind curtailment cost is 50 $/MW which is higher than

the largest marginal cost of the given thermal units. The standard
deviation of wind forecast error will gradually increase from 0%
to 6.5% of the forecast from to 24. The standard devia-

Fig. 4. Wind power forecast and scenarios.

TABLE I
PROBABILITY OF SCENARIOS AFTER SCENARIO REDUCTION

tion of the system load forecast error is 3% of the load forecast
at each time interval. The probability of scenarios is given in
Table I. The forecasted wind and its error scenarios are depicted
in Fig. 4. The following three case studies are considered:
Case 1) Deterministic case (without network contingencies).
Case 2) Stochastic wind and load forecast errors in Case 1.
Case 3) contingencies in Case 2.
Case 1: This case provides a reference in which no contin-

gency or uncertainty is considered. The total system operation
cost is $99 061. Table II depicts the scheduling of three thermal
units and the wind energy units. The available wind energy is
fully utilized since the wind energy units are assumed to be
price-takers. G1 is scheduled at all hours since it is the cheapest
unit. G2 is committed in the first hour due to min up constraints.
G2 is scheduled to generate between hours 11–21, while G3 is
scheduled between 13–19, since these are the next expensive
units in the ascending order. No reserves or DR are scheduled
in the base case.
Case 2: This case includes wind and load forecast errors

which are considered through the Monte Carlo scenarios. The
total system cost increases to $104 431. The base case dispatch
is identical to that of Case 1. Fig. 5 depicts the wind power cur-
tailments in the base case and scenarios. The algorithm curtails
small amounts of wind in order to not utilize expensive regula-
tion and spinning-down reserves. However, it should be noted
that wind power curtailment might not be allowed in certain
cases. The algorithm does not schedule regulation reserves in
Case 2 other than 1.12 MW for hour 12 and 2 MW for hour
19 from G3. The spinning reserve dispatch and DR are given in
Table III. These are the maximum deployable reserves available
to the scenarios. Involuntary load shedding of 790, 50, 1450,
470, 120, and 7010 kWh is utilized in scenarios 1, 2, 3, 4, 5,
and 7, respectively. The maximum load shedding occurs in the
seventh scenario with the smallest probability. The expected
system cost in Case 2 will increase to $104 592 when the in-
voluntary load shedding is not allowed. The day-ahead system
cost without DRR is $104 973 which will be reduced once DRR
replaces the expensive units.
Case 3: Two contingencies of G3 and the transmis-

sion line (between buses 3–6) are considered along with the
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TABLE II
CASE 1 GENERATION DISPATCH (MW)

Fig. 5. Wind generation curtailments in Case II. Solid line: zero curtailment at
base case. Dotted line: wind energy curtailments in scenarios.

10 wind and load forecast scenarios. The system cost increases
to $105 848 in Case 3 with an expected involuntary load shed-
ding of 138.2 kWh. The involuntary load shedding in this case
is due to infeasibilities in wind and load scenarios. The DR
schedule is identical to that in Case 2. The reserve dispatch for
Case 3 is given in Table IV. The expensive regulation reserve is
deployed for managing contingencies. The wind generation in
the base Case 3 is curtailed, similar to that in Case 2, to consider
the contingencies. When DRR is not allowed, the optimal
expected system cost is $106 041 with an expected involuntary
load shedding of 20 kWh.
Sensitivity Analysis: A sensitivity analysis is performed to

evaluate the effect of wind and load forecast errors. Fig. 6 de-
picts the error levels versus the expected costs. In order to com-
pare the effect of wind and load forecast errors, the standard de-
viation of wind is normalized by the maximum capacity of wind
energy unit and the standard deviation of load is normalized by
the maximum system load. First the system load forecast error
is fixed to that of Case 3 (3%) and wind forecast error is varied
starting from that of Case 3 (6.5%) to 32%. We observe that
the wind forecast error does not affect the expected system cost

TABLE III
CASE 2 RESERVE DISPATCH (MW)

TABLE IV
CASE 3 RESERVE DISPATCH (MW)

significantly due to the limited availability of wind generation.
Then the wind forecast error is fixed to that of Case 3 (6.5%)
and the system load forecast error is varied starting from that of
Case 3 (3%) to 12%. The expected system cost increases sharply
due to the allocation and the deployment of additional reserves
to respond to the increasing volatility of the system load.
Fig. 7 depicts the expected cost of uncertainty at each wind

penetration level when the standard deviation of system load
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Fig. 6. Expected system cost versus wind energy and load forecast errors.

Fig. 7. Expected system cost with the wind penetration level.

TABLE V
RESERVE ALLOCATION AMONG UNITS IN THE 118-BUS SYSTEM CASE

forecast error is 3%. The wind penetration refers to the installed
capacity, and the hourly mean production is proportional to the
installed capacity. Here, for a lower wind penetration, the sensi-
tivity of the expected system cost to wind energy forecast error
is insignificant. This is because the required reserve would be
low as the uncertainty is increased at the limited penetration
level of 20 MW. However, the expected cost would increase
for a higher penetration level as the forecast error is increased.

B. Modified IEEE 118-Bus System
The Modified IEEE 118-Bus system is used to evaluate the

efficiency of the proposed method. There are 186 branches and
91 loads. Three wind energy units are added to the 54 existing
units. There are 50 DRPs at certain load buses which provide
bids to the reserve market. The VOLL is 400 $/MWh at each
load bus. Seven contingencies include the outage of gen-
erators at buses 77, 82, 105, 113 and the outage of lines 17–113,
114–115, and 17–113. The wind and load forecast errors are rep-
resented by 1500 Monte Carlo scenarios. The number of sce-
narios is reduced to 12 by using forward–backwards scenario

TABLE VI
SCALABILITY ANALYSIS

Fig. 8. Solution time versus contingency or uncertainty scenarios.

reduction techniques [23]. The data are available at motor.ece.
iit.edu/data/Data_118_Bus.pdf. Table V shows the generation
units with allocated reserves, .
Here, the values for the listed
units are positive for at least one hour in 24 hours.
The total expected system cost is $1 270 517 without DR.

The allocated reserves include 155 MWh of regulation-up,
3076 MWh of spinning-up, and 2204 MWh of spinning-down
reserve. No involuntary load shedding is deployed. When
DR is considered, the expected cost reduces to $1 263 126,
and expensive regulation reserve capacity is not allocated.
The spinning-up reserve is reduced to 251 MWh while the
spinning-down reserve remains nearly the same at 2376 MWh.
2987 MWh of DR is allocated using DRPs for contingency
and wind and load forecast error scenarios whenever they are
cheaper than spinning-up reserve bids. Similar to the case
without DR, no involuntary load shedding is allocated. The
solution curtailed 182.27 MWh of wind energy for accommo-
dating contingencies and forecast errors in both cases.
The solution time in the latter case is 1 hour, 42 minutes, with
an Intel Xeon 2.4 GHz CPU and 64 GB of RAM.
Scalability Analysis: This analysis evaluates the performance

when the number of contingencies and the error fore-
cast uncertainty are increased. Here, two tests are performed.
First, three contingencies are considered with 12, 18,
and 24 forecast error scenarios. The change in the solution time
is observed. Second, contingencies are changed to 3, 7,
and 11 while the number of forecast error scenarios is kept at
12. The results are presented in Table VI and Fig. 8. Here, the
slope of the solution time is decreased as the number of contin-
gencies and the level of uncertainties are increased. This is be-
cause some scenarios would require higher reserve allocations,
and once the situation with these scenarios is resolved, the addi-
tional scenarios might not require much further reserve alloca-
tions. Besides, the performance is more sensitive to the number
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Fig. 9. Northwest region of Turkish Electric Power Network.

of contingencies since one contingency could introduce
more constraints to the problem.

C. Northwest Region of Turkish Power System

Turkey has taken major steps towards building the country’s
electricity market since the enactment of Turkish Electricity
Market Law in 2001 [25]. In this section, the proposed model
is applied to the northwest region of the Turkish Power System
which includes large industrial activities. The proposed sched-
uling model would study the coordination of hourly reserve
and DR requirements when wind and load forecast uncertain-
ties are considered. The subsystem depicted in Fig. 9 is com-
posed of 173 buses, 28 thermal generating units, 66 branches,
and 131 transformers.
Two contingencies are considered as the outages of

one of the generators at bus NUHENERJI_A and the trans-
mission line COLAKOGLU-KROMANCELIK. 1500 scenarios
are created to simulate wind and load forecast errors which
are reduced to 12 scenarios. The standard deviations for wind
and load forecaster error are 6.5% and 4%, respectively. Con-
siderable industrial loads appear at buses DILISKELESI, CO-
LAKOGLU, ICMELER, DUDULLU, and GEBZEOSB. These
loads are mostly composed of shipyards, steel mills, and cement
manufacturing facilities in an industrial zone.

Three 100-MW wind farms are located at three buses
SILE, KARAMURSEL, and YALOVA, which have con-
siderable wind potential. Detailed data are included in
motor.ece.iit.edu/data/Data_TR.pdf. Six DRP buses are
DILISKELESI, COLAKOGLU, DUDULLU, KOSEKOY,
KUCUKBAKKAL, and GEBZEOSB, with both residential
and industrial loads. For instance, cement factories could curtail
consumption and shift production when required by the ISO.
The DRP bids are 7, 14, and 21 MW at 7, 9, and 11 $/MW
and the deployment prices at 17.5, 22.5, and 27.5 $/MW,
respectively.
The expected day-ahead system cost without DRR is

$559 039 while the cost reduces to $549 289 when DRR is
considered. The wind curtailment is 78.38 MWh in both cases
(see Table VII). DRR replaces 870 MWh of spinning-up,
915 MWh of spinning-down, and 44 MWh of regulation-up
reserves, and reduces the costs by $9750. The DRPs are paid a
total of $17 045, for participating in the DRR program.

VI. CONCLUSION

The proposed method is used to analyze the effect of
contingencies, wind and load uncertainties, and DRP bids in the
hourly generation scheduling. The proposed algorithm curtails
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TABLE VII
ALLOCATED DRRs (MW) OF DRPs

the wind generation in scenarios in order to not allocate ex-
pensive regulation and spinning-down reserves. The sensitivity
analyses show that the expected system cost is more sensitive to
load forecast errors. The effect of wind forecast error depends
on the wind penetration level. The system cost decreases as the
wind penetration increases since the operating cost of wind en-
ergy units is neglected. However, the expected cost increases
considerably with the increasing wind forecast errors. A scala-
bility analysis is performed which shows that the rate of change
in the solution time decreases sharply as the number of con-
sidered contingencies is increased or wind and load volatilities
are higher. Furthermore, it is observed that the solution perfor-
mance is more sensitive to the number of contingencies since
contingencies could add more variables and constraints to the
problem. It is also shown that the integration of DR at proper lo-
cations and periods would reduce the cost of the security-based
power system scheduling.
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