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Abstract This paper presents an optimization method by generating multiple strong
Benders cuts for accelerating the convergence of Benders Decomposition (BD) when
solving the network-constrained generation unit commitment (NCUC) problem. In
NCUC, dc transmission network evaluation subproblems are highly degenerate,
which would lead to many dual optimal solutions. Furthermore, the classical BD cuts
are often low-density which involve only a limited number of decision variables in
the master problem. Therefore, the dual optimal solutions and the corresponding Ben-
ders cuts are of crucial importance for improving the efficiency of the BD algorithm.
The proposed method would generate multiple strong Benders cuts, which are pareto
optimal, among candidates from multiple dual optimal solutions. Such cuts would be
high-density in comparison with low-density cuts produced by the classical BD. The
proposed multiple strong Benders cuts are efficient in terms of reducing the total iter-
ation number and the overall computing time. The high-density cuts may restrict the
feasible region of the master unit commitment (UC) problem in each iteration as they
incorporate more decision variables in each Benders cut. The multiple strong Ben-
ders cuts would accordingly reduce the iteration number and overall computing time.
Numerical tests demonstrate the efficiency of the proposed multiple strong Benders
cuts method in comparison with the classical BD algorithm and the linear sensitivity
factors (LSF) method. The proposed method can be extended to other applications
of BD for solving the large-scale optimization problems in power systems operation,
maintenance, and planning.
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Nomenclature

Indices
a, b,m,n Denote a bus
d, d ′ Denote a BD iteration
i, j Denote a unit
k Denote a segment of a cost curve function
l, l′ Denote a transmission line
o, o′ Denote a subset
p Denote a phase shifter
t, τ Hourly index

Sets and vectors
B,Bo,Bo′ Set/subsets of buses
f(b), t(b) Set of transmission lines starting from bus b/ending at bus b

PLt Vector of power flow variables at hour t

PLmax Vector of power flow upper limit
U(b) Set of generators located at bus b

Z,Zc,SZo,SZo′ Sets of buses
γ (m) Denote a set of buses, for each bus n in the set, there is a phase

shifter at line m to n, and m is the tap side and n is the non-tap side
γt Vector for phase shifter at hour t

γ min, γ max Vector of phase shifter lower/upper limits

Variables
DT i ,UT i Number of hours unit i must be initially offline/online due to its

minimum off/on time limits
G Objective value of the global optimal solution to the original

problem
Iit ,Pit Unit commitment decision/generation dispatch of unit i at hour t

LBd ,UBd Lower/upper bound of the original problem objective value
obtained at BD iteration d

LBbest,UBbest Best obtained lower/upper bounds for the objective value to the
original problem

offset Offset term in the linear expression of the power loss
ORit ,SRit Non-spinning/spinning reserve provided by unit i at hour t

Pikt Generation dispatch of unit i at hour t at segment k

PLosst System loss at hour t

PLlt Power flow of transmission line l at hour t

q, q1, q2,Q Dual variables for the dual problem
s Slack variable
SDit ,SUit Shutdown/startup cost of unit i at hour t

θat , θbt Phase angle of bus a and bus b at hour t

θref Phase angle of the reference bus
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γabt Phase shifter value on the line from bus a to bus b at hour t

λ, κ,π Dual variables for the primal problem
|Z| Number of buses that belong to set Z
·̂, ·̃ Value for variables calculated at previous BD iterations

Constants
c A constant integer number determined during the algorithm
Cb Loss distribution factor corresponding to bus b

cik,Ni Incremental cost for segment k and no-load cost of unit i

Dbt System load at bus b hour t

DPi ,UPi Shutdown/startup ramp limits of unit i

DRi ,URi Ramping down/ramping up limits of unit i

LFb Loss factor related to bus b

LSFm
ab The sensitivity of the power flow on line l (from bus a to bus b) to

power injection at bus m

M,ε Very large/small positive number
MSRi Spinning reserve that can be provided by unit i in one minute
NB Number of buses
NT Number of hours under study
PDt ,PLt System load/loss at hour t

P min
i , P max

i Minimum/maximum capacity of unit i

P max
ik Maximum capacity of unit i of segment k

QSCi Quick start capacity of unit i

ROt ,RSt System non-spinning/spinning reserve requirements at hour t

T on
i , T

off
i Minimum on/off time limits of unit i

xab Line reactance between bus a and bus b

Xon
i0 ,X

off
i0 On/off time counter of unit i at the initial status

1 Introduction

In restructured power systems, self-interested entities, including generation compa-
nies (GENCOs), transmission companies (TRANSCOs), and distribution companies
(DISCOs), are to maximize their own profits and minimize potential risks when par-
ticipating in power markets. The independent system operator (ISO) coordinates mar-
ket participants and operates the competitive market efficiently for ensuring a secure
and economic operation. Such decisions corresponding to the power system oper-
ation, maintenance, and planning are to be made via efficient optimization models
and methodologies [1]. Efficient decomposition methods are utilized in large power
system optimization problems since most of the optimization problems belong to
non-deterministic polynomial-time hard (NP-hard) problems and the solution to the
original problem in such cases would be an intractable task without decomposition.

The BD algorithm was first introduced by J.F. Benders [2] for solving large-scale,
mixed-integer programming (MIP) problems. BD is a common technique for separat-
ing large scale power system problems into several easy-to-solve subproblems. The
algorithm is widely adopted in various power system optimization problems includ-
ing security-constrained unit commitment (SCUC) and security-constrained optimal
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power flow (SCOPF) [3–9]. Reference [3] applied BD to SCUC problems for sep-
arating the unit commitment (UC) in the master problem from the hourly network
security check in subproblems. The subproblems checked the ac network security
constraints based on the UC solution to determine whether a converged and secure
ac power flow solution would be feasible. If the feasibility conditions could not be
satisfied, the feasibility Benders cuts were fed back to the master UC problem for
seeking a feasible UC solution based on the added cuts. Reference [4] considered BD
applications to generation and transmission planning problems by decoupling the
master planning problems from the network evaluation and network security check-
ing subproblems. Reference [5] used the feasibility theorem of BD to derive an an-
alytical condition for determining whether feasible solutions of the original SCUC
problems could be obtained from the current dual solution of Lagrangian Relaxation.
Reference [6] proposed a BD-based algorithm for calculating a preventive dispatch
solution based on a full ac power flow. It solved the optimal power flow in the mas-
ter problem, and then minimized the real and reactive power by fictitious sources in
subproblems. Reference [7] used the generalized BD to solve the large-scale multi-
period optimal power flow problem. The problem considered the start-up and shut-
down characteristics of thermal units, the transmission network model, and hydraulic
equations for integrated hydroelectric plants in a river system. Optimality cuts gener-
ated at each iteration provided a lower estimate of total operation cost in the Benders
subproblem. Reference [8] applied generalized feasibility Benders cuts for optimiz-
ing the post-contingency corrective action in SCUC, which accurately formulated
the hourly UC of quick-start units in post-contingency corrective actions via a MIP
subproblem instead of linear programming (LP). Reference [9] discussed a general
structure of BD for power system decision making applications. Three categories of
decision-making problems in power systems for economic, reliability, and risk eval-
uations were mapped onto Benders subproblems. The applications demonstrated the
potential use of BD for solving special structured MIP problems in power systems.

The classical BD algorithm often converges slowly, i.e., the slow convergence
would introduce major computational bottlenecks for a MIP problem which has to
be solved repeatedly in practical cases. Several studies discussed possible improve-
ments for accelerating the BD convergence. Reference [10] discussed several ways of
improving the performance of BD including a judicious selection of optima from the
Benders subproblems to generator strong cuts and properly formulate the subsequent
BD problems. Reference [11] proposed to generate cuts from the solution of a LP-
approximated master problem by relaxing the integrality request for the first several
iterations. Similarly, [12] discussed that only a feasible, rather than an optimal, solu-
tion of master problem was necessary for subproblems to generate cuts. Therefore,
heuristic methods were sought, in place of the optimal solution of master problem,
to quickly locate feasible solutions for generating cuts. In this situation, the conver-
gence was not guaranteed since the cuts were only associated with a set of feasible
master solutions. On the other hand, [13] proposed to generate inexact cuts which
were to derive a good enough dual solution, instead of the optimal dual solution, for
subproblems. In such cases, subproblems were very large-scale LP problems which
required a substantial computation time to get the solution. Reference [14] applied the
subsystems of an infeasible LP to generate feasibility cuts, and computational results
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showed that the method converged faster than that with feasibility cuts generated via
extreme rays located by the simplex method. Recently, [15] proposed an algorithm to
accelerate the BD by exploring the local branching in the neighborhood of the master
problem solution. The lower and the upper bounds were simultaneously improved
via local branching in which each located feasible solution was used to generator
optimality/feasibility cuts.

This paper proposes multiple strong Benders cuts at each iteration to accelerate
the convergence of the NCUC problem. The experiments have shown that the draw-
back of classical BD algorithm resides in the slow convergence for large-scale power
system applications [4]. As will be proved in this paper, each strong Benders cut
generated through the proposed algorithm is a pareto optimal cut, and the proposed
method reduces the number of Benders iterations as well as the overall computing
time. The proposed BD strategy can be easily extended to other large-scale optimiza-
tion problems in power systems.

The rest of the paper is organized as follows. Section 2 presents the NCUC model
and the classical BD algorithm. Section 3 proposes two methods for generating mul-
tiple strong cuts at each iteration for accelerating convergence, and in the appendix
we prove that each generated cut is pareto optimal. Section 4 presents three cases
to discuss the effectiveness of the proposed method. The conclusions are drawn in
Sect. 5.

2 NCUC problem formulation and solution methodology

The NCUC problem is formulated as a MIP problem shown in (1)–(8). The ob-
jective function is to minimize the total operation cost, including incremental cost,
no-load cost, and startup/shutdown cost, as shown in (1), subject to a set of system
and generating unit constraints. System constraints include the system power balance
in (2), and the system spinning and non-spinning reserve requirements in (3). Unit
constraints include ramping up/down limits as well as startup/shutdown ramping for
individual units in (4), minimum on and off time constraints in (5), real power gener-
ation limits in (6), and constraints on spinning and non-spinning reserves provided by
individual generators in (7). Only thermal units are modeled in (4)–(7). The formu-
lation of other types of generating units including combined-cycle, cascaded hydro,
and pumped storage, is discussed in the authors’ previous work [19]. Here, (8) rep-
resents the dc network evaluation constraints, which include power balance for each
bus b, power flow equation for each transmission line l, and phase shifter and trans-
mission power flow limits. For simplicity, PLosst is given initially as an input which is
estimated as a percentage of the system load PDt. A more accurate loss formulation is
given in (9) if the loss factor LFb is known, which represents the sensitivity of power
loss to the bus power injection

G = Min
∑

t

∑

i

[∑

k

cik · Pikt + Ni · Iit + SUit + SDit

]
(1)

S.t.
∑

i

Pit = PDt + PLosst (2)
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∑

i

SRit ≥ RSt

∑

i

ORit ≥ ROt

(3)

Pit − Pi(t−1) ≤ URi · Ii(t−1) + UPi · (Iit − Ii(t−1)) + P max
i · (1 − Iit )

Pi(t−1) − Pit ≤ DRi · Iit + DPi · (Ii(t−1) − Iit ) + P max
i · (1 − Ii(t−1))

(4)

UT i∑

t=1

(1 − Iit ) = 0, where UT i = max{0,min[NT, (T on
i − Xon

i0 ) · Ii0]}

t+T on
i −1∑

τ=t

Iiτ ≥ T on
i · (Iit − Ii(t−1)), ∀t = UT i + 1, . . . ,NT − T on

i + 1

NT∑

τ=t

[Iiτ − (Iit − Ii(t−1))] ≥ 0, ∀t = NT − T on
i + 2, . . . ,NT

DT i∑

t=1

Iit = 0, where DT i = max{0,min[NT, (T
off
i − X

off
i0 ) · (1 − Ii0)]}

t+T
off
i −1∑

τ=t

(1 − Iiτ ) ≥ T
off
i · (Ii(t−1) − Iit ),

∀t = DT i + 1, . . . ,NT − T
off
i + 1

NT∑

τ=t

[1 − Iiτ − (Ii(t−1) − Iit )] ≥ 0, ∀t = NT − T
off
i + 2, . . . ,NT

(5)

Pit = P min
i · Iit +

∑

k

Pikt

0 ≤ Pikt ≤ P max
ik · Iit

P min
i · Iit ≤ Pit ≤ P max

i · Iit

(6)

Pit + SRit ≤ P max
i · Iit

SRit ≤ 10 · MSRi · Iit

ORit = SRit + (1 − Iit ) · QSCi

(7)

∑

l∈f(b)

PLlt −
∑

l∈t(b)

PLlt =
∑

i∈U(b)

Pit − Dbt − Cb · PLosst

PLlt − (θat − θbt − γabt )/xab = 0 line l is from bus a to bus b

γ min ≤ γt ≤ γ max

(8)
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− PLmax ≤ PLt ≤ PLmax

θref = 0

PLt −
∑

b

LFb ·
( ∑

i∈U(b)

Pit − Dbt

)
− offset = 0 (9)

BD is employed to solve the large-scale NCUC problem with a large number of
constraints including those in the hourly network evaluation subproblems (8). In ap-
plying BD, the original problem described as (1)–(8) is decomposed into a master
UC problem (10) and several hourly network evaluation subproblems (11). The mas-
ter is a MIP problem and subproblems are LP problems. The subproblems examine
the master problem solution for satisfying the network constraints. If the subproblem
at hour t is infeasible, the corresponding Benders cut in (12) is generated and added
to the next iteration of the master UC problem. The iterative process will continue
by successively adding Benders cuts until network violations are mitigated. In (11) a
unique non-negative slack variable st is introduced for all buses. The physical inter-
pretation of a single non-negative slack variable is to diminish the most violated bus
power balance iteratively. Reference [16] reported that a single non-negative slack
variable strategy would outperform multiple non-negative slack variables at different
buses by reducing the overall number of iterations

LB = Min
∑

t

∑

i

[∑

k

cik · Pikt + Ni · Iit + SUit + SDit

]

S.t. Equations (2)–(7) (10)

Benders cuts from all previous iterations

Min st

S.t.
∑

l∈f(b)

PLlt −
∑

l∈t(b)

PLlt − st ≤
∑

i∈U(b)

Pit − Dbt − Cb · PLosst λ1,bt

−
∑

l∈f(b)

PLlt +
∑

l∈t(b)

PLlt − st ≤ −
∑

i∈U(b)

Pit + Dbt + Cb · PLosst λ2,bt

PLlt − (θat − θbt − γabt )/xab = 0 κlt

γpt ≤ γ max
p π1,pt

−γpt ≤ −γ min
p π2,pt

PLlt ≤ PLmax
l π3,lt

−PLlt ≤ PLmax
l π4,lt

θref ,t = 0 πt

0 ≤ st

(11)

If the optimal objective value ŝt in (11) is larger than the predefined threshold ε, the
feasibility Benders cut represented by (12) will be utilized by grouping generators
that are located at the same bus
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Fig. 1 NCUC procedure with the classical BD method

NB∑

b=1

∑

i∈U(b)

(λ̂1b,t − λ̂2b,t ) · (Pit − P̂it ) + ŝt ≤ 0 (12)

U(b) represents the set of generators located at the same bus b that shares the same
dual variables λ̂1b,t and λ̂2b,t , and ŝt is the current optimal objective value of (11).
Figure 1 shows the flowchart of the NCUC problem with the classical BD method.
The master UC problem (10) is solved and the dispatch solution P̂it is passed on to
the hourly network evaluation subproblems (11). If there is any network violations
(i.e. st > ε), a feasibility cut in (12) corresponding to the violated hour is gener-
ated and fed back to the master UC problem for further iterations. The procedure
stops when st ≤ ε is satisfied at all hours, no more feasibility Benders cuts are gen-
erated, and the final solution to the original NCUC problem is obtained. At each
Benders iteration d , the objective value of (10) provides a lower bound LBd to the
original problem, and UBd = LBd + M · ∑t sdt provides an upper bound to the orig-
inal problem where sdt is the solution of (11) representing the violation at hour t

at Benders iteration d . It is noted that by successively appending feasibility cuts to
(10) the lower bound obtained at each iteration will be monotonically increasing,
i.e. LBd−1 ≤ LBd ≤ G and LBbest = LBd , but that will not be the case with the up-
per bound. The upper bound for the current iteration may be lower or higher than
that in previous iterations, and the best upper bound is the minimum of all obtained
values, i.e. G ≤ UBbest = mind{UBd}. Assuming the current Benders iteration is d ,
and the best upper bound is obtained at iteration d ′, the stopping criterion st ≤ ε is
UBbest−LBbest

LBbest
= (LBd′+M·∑t sd′t )−LBd

LBd
≤ M

LBd
· NT · ε where sd ′t is the violation at hour
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t obtained at the Benders iteration d ′. That is, with a small enough ε, the stopping
criterion will force LBbest and UBbest to be close, which will restrict the final solution
to be close enough to the global optimal solution of the original problem. Here, st
in (11) represents the maximum power imbalance among all buses at hour t ; thus
a non-zero st means the final solution is not strictly feasible to the original NCUC
problem in the sense that there will be at most ε MW violation at each bus. The ε

values of 0.01–0.1 are used in our case studies. For power systems with peak loads
of thousands to tens of thousands of MW, the violation of less than 0.01–0.1 MW
is tolerable and practical. The NCUC is used to determine day-head UC schedules
(i.e. 24 hours), and small violations less than 0.01–0.1 MW can be handled by the
real-time power system operation with automatic generation control schemes [1].

The linear sensitivity factor (LSF) method could also be used to solve the NCUC
problem [1], which replaces (8) with (13). LSF represents the sensitivity of line
flows to the bus power injection. The power flow in each line can be calculated by
(13), where LSFm

ab represents the sensitivity of power flow of line l (from bus a to
bus b) to power injection at bus m. The detailed calculation procedure of LSFm

ab is
discussed in [1]. Here, (

∑
i:i∈U(m) Pit − Dmt − Cm · PLosst + ∑

n:n∈γ (m) γmn/xmn −∑
n:m∈γ (n) γmn/xmn) represents the total power injection to bus m, where items repre-

sent total generation, load demand, losses distributed at bus m, and equivalent power
injection from phase shifters to bus m, respectively. Using the LSF method for the
solution of NCUC problem, the UC problem described as (1)–(7) is solved first, then
we check the power flow on each transmission line at each hour using (13), and ap-
pend the violated (13) back to the master UC problem for mitigating violations. The
procedure will stop when (13) is satisfied for all lines at all hours, and no transmission
power flow violation exists. In the case study section, we will see that the LSF method
may be efficient for small systems. However, since there is one constraint for each
violated transmission line at each hour, LSF may introduce many more constraints
than the BD method for large-scale power systems, which makes the UC problem
difficult to solve in real time. Thus, decomposition is the only viable option for the
solution of the large-scale NCUC problem in real time

−PLmax
l ≤ PLlt =

∑

m

LSFm
ab ·

( ∑

i∈U(m)

Pit − Dmt − Cm · PLosst

+
∑

n∈γ (m)

γmn/xmn −
∑

m∈γ (n)

γmn/xmn

)
≤ PLmax

l (13)

3 Accelerating BD via multiple strong Benders cuts

The drawback of the classical BD algorithm presented in Sect. 2 resides in its slow
convergence. In this section, we discuss our methodology for accelerating the BD
procedure via multiple strong Benders cuts at each iteration. The proposed method-
ology for generating multiple strong Benders cuts reduces the number of Benders
iterations as well as the overall computing time.
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3.1 Generate multiple strong Benders cuts from multiple optimal dual solutions

The dual problem of (11) is formulated as (14) which is highly degenerate. In this
case, there are many zeros on the right-hand-side with multiple optimal solutions. If
one or more of the variables in the basis of a LP problem is zero, the basis is called
degenerate. And the LP is highly degenerate if there are many vertices of the feasible
region for which the associated basis is degenerate. Since the coefficients of Benders
cut (12) are generated using the optimal dual solution of (14), the proper choice of
the optimal dual solution and the corresponding Benders cuts would be of crucial
importance for the efficiency of the BD algorithm

Max
∑

b

( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· (λ1,bt − λ2,bt )

+
∑

p

(γ max
p · π1,pt − γ min

p · π2,pt ) +
∑

l

PLmax
l · (π3,lt + π4,lt )

S.t. (λ1,at − λ2,at ) + (−λ1,bt + λ2,bt ) + κlt + π3,lt − π4,lt = 0

line l is from bus a to b
∑

a

κlt /xam −
∑

b

κl′t /xmb = 0

line l is from bus a to m, line l′ is from bus m to b,

m is not reference bus
∑

a

κlt /xam −
∑

b

κl′t /xmb + πt = 0 (14)

line l is from bus a to m, line l′ is from

bus m to b, m is reference bus

κlt /xab + π1,pt − π2,pt = 0

phase shifter p is located at line l, which is from bus a to b

−
NB∑

b=1

(λ1b,t + λ2b,t ) ≤ 1

λ1,bt , λ2,bt , π1,pt , π2,pt , π3,lt , π4,lt ≤ 0, κlt , πt free

All buses are divided into exclusive subsets Bo that satisfy
⋃

o Bo = B and Bo ∩
Bo′ = �, where B is the set of all buses in the system. A set of new subproblems
(15) is generated corresponding to each subset Bo. The idea behind (15) is to find an
optimal dual solution which can generate a cut for restricting the feasible region of
Pi i ∈ U(b) and b ∈ Bo to the highest possible extent. An optimal solution of (15)
is also an optimal solution to the dual problem (14) since all constraints in (14) are
included in (15) and the fifth constraint in (15) would force the objective value to be

 Author's personal copy 



Accelerating the Benders decomposition for network-constrained unit 349

equal to its optimal value ŝ, calculated by (11)

Max
∑

b∈Bo

∑

i∈U(b)

(P max
i − ε) · (λ1b,t − λ2b,t )

+
∑

b/∈Bo

∑

i∈U(b)

(P min
i + ε) · (λ1b,t − λ2b,t )

S.t. (λ1,at − λ2,at ) + (−λ1,bt + λ2,bt ) + κlt + π3,lt − π4,lt = 0

line l is from bus a to b
∑

a

κlt /xam −
∑

b

κl′t /xmb = 0

line l is from bus a to m, line l′ is

from bus m to b, m is not reference bus
∑

a

κlt /xam −
∑

b

κl′t /xmb + πt = 0 (15)

line l is from bus a to m, line l′ is from bus m to b, m is reference bus

κlt /xab + π1,pt − π2,pt = 0

phase shifter p is located at line l, which is from bus a to b

∑

b

( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· (λ1,bt − λ2,bt )

+
∑

p

(γ max
p · π1,pt − γ min

p · π2,pt ) +
∑

l

PLmax
l · (π3,lt + π4,lt ) = ŝt Q

−
NB∑

b=1

(λ1b,t + λ2b,t ) ≤ 1

λ1,bt , λ2,bt , π1,pt , π2,pt , π3,lt , π4,lt ≤ 0, κlt , πt free

The new cut (16) is generated from the optimal solution of (15).

NB∑

b=1

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · Pit + ŝt ≤ 0 (16)

where λ̃ is the new optimal solution to (15).

Definition 1 (See also Magnanti and Wong 1981 [10]) A cut for the minimization
of (1)–(8) as

∑NB
b=1

∑
i∈U(b)(λ1b,t − λ2b,t ) · (Pit − P̂it ) + ŝt ≤ 0 would dominate or

is stronger than
∑NB

b=1
∑

i∈U(b)(λ
′
1b,t − λ′

2b,t ) · (Pit − P̂it ) + ŝt ≤ 0 as another cut, if

for all Pt in their domain {0, [Pmin,Pmax]}, (17) is satisfied with a strict inequality for
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any point in the feasible region.
[

NB∑

b=1

∑

i∈U(b)

(λ′
1b,t − λ′

2b,t ) · (Pit − P̂it ) + ŝt

]

−
[

NB∑

b=1

∑

i∈U(b)

(λ1b,t − λ2b,t ) · (Pit − P̂it ) + ŝt

]
≤ 0 (17)

Definition 2 (See also Magnanti and Wong 1981 [10]) A cut is pareto optimal if no
other cut could dominate it.

Theorem 1 The cut (16) generated via multiple optimal dual solutions is pareto
optimal.

The proof of Theorem 1 is provided in Appendix A. The problem considered in
Magnanti and Wong 1981 [10] is a convex hull, and the points Pt we discuss here
belong to a non-convex set {0, [Pmin,Pmax]}. The dual to (15), which corresponds to
the primal form of the original problem (11), is given in (18). Since dual problems
(14)–(15) would introduce many more variables than the primal problem (11), we
have experienced that it is more efficient to solve the NCUC problem in its primal
form (11) and (18) than its dual form (14)–(15). Furthermore, subproblems (11) and
(18) are large and sparse and could experience a higher convergence speed by using
a primal-dual logarithmic barrier algorithm provided by CPLEX [17]. This algorithm
is suitable for large LP problems with dense columns; that is, a relatively high number
of nonzero entries in each column

Min ŝt · Q + st

S.t.
∑

l∈f(b)

PLlt −
∑

l∈t(b)

PLlt − st +
( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· Q

≤ RQ1bt

−
∑

l∈f(b)

PLlt +
∑

l∈t(b)

PLlt − st −
( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· Q

≤ RQ2bt (18)

PLlt − (θat − θbt − γabt )/xab = 0

γpt + γ max
p · Q ≤ γ max

p

−γpt − γ min
p · Q ≤ −γ min

p

PLlt + PLmax
l · Q ≤ PLmax

l

−PLlt + PLmax
l · Q ≤ PLmax

l

θref ,t = 0

0 ≤ st , Q free
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where

RQ1bt =
{∑

i∈U(b)(P
max
i − ε), b ∈ Bo∑

i∈U(b)(P
min
i + ε), b /∈ Bo

and

RQ2bt =
{−∑

i∈U(b)(P
max
i − ε), b ∈ Bo

−∑
i∈U(b)(P

min
i + ε), b /∈ Bo

In the implementation of (18), a strong Benders cut (16) is generated for each
subset Bo. We should point out that different forms of subsets Bo might conceiv-
ably generate different pareto optimal cuts. The number of subsets may also impact
the convergence. More pareto optimal cuts generated in each iteration could result in
fewer iterations between the master UC and network evaluation subproblems. How-
ever, the solution of the master problem may take longer because of the large number
of cuts. Here, the optimal number of subsets would be a tradeoff between the compu-
tational burden of solving the master problem and the number of iterations. We use 2
subsets for off peak hours and 6 for peak hours in our case studies. Also, buses that
are geographically close are placed into the same subset Bo. In practice, the parame-
ter tuning will be necessary in order to reduce the number of iterations and the overall
computing time.

3.2 Generate multiple strong Benders cuts by enhancing the density of cuts

For an optimal dual solution of (14), λ̂1,bt , λ̂2,bt , π̂1,pt , π̂2,pt , π̂3,lt , π̂4,lt , κ̂lt , π̂t , all
buses are divided into two subsets Z and Zc , with Z representing the set of buses b

that satisfy (λ̂1,bt − λ̂2,bt ) = 0, and Zc representing the set of all other buses. Usually
the Benders cut (12) is low density which means that a small number of decision vari-
ables Pt is involved. That is, very few coefficients of Pt are nonzero, which would
limit the contribution of Benders cut (12) to strengthening the feasible region of the
master UC problem. The idea here is to generate strong Benders cuts for strength-
ening the master UC problem at each iteration and incorporating more decision vari-
ables Pt at each Benders cut for reducing the number of iterations and the overall
computing time.

Based on this idea, we divide the set Z into exclusive subsets SZo, which satisfy⋃
o SZo = Z and SZo

⋂
SZo′ = �. Here buses in the set Z that are geographically

close are included in the same subset SZo. Different partitioning subsets may result in
deriving different high density cuts and different convergence performances, which
would require more research. A new LP optimization problem (19) is formulated
corresponding to each subset SZo for generating high-density Benders cuts. The last
inequality constraint in (19) is to guarantee that the problem (19) is bounded. We ex-
perience that the value of 2 · |Z| used in problem (19) does not impact the convergence
performance of the proposed method significantly as illustrated in Case study 4.2 in
which we replace 2 · |Z| with 1. The optimal solution of (19), λ̂1,bt λ̂2,bt for b ∈ Zc and
λ̄1,bt λ̄2,bt for b ∈ Z, is not feasible for the network evaluation problem (11) or its dual
(14) as it violates −∑NB

b=1(λ1,bt +λ2,bt ) ≤ 1 in (14). Thus (20) is solved to get the fi-
nal high-density Benders cut given in (21), where c = ∑

b∈Zc (−λ̂1,bt − λ̂2,bt )+2 · |Z|
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is constant with the given λ̂1,bt and λ̂2,bt for b ∈ Zc

Max
∑

b∈SZo

∑

i∈U(b)

(P max
i − ε) · (λ1b,t − λ2b,t )

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(P min
i + ε) · (λ1b,t − λ2b,t )

S.t. (λ1,at − λ2,at ) + (−λ1,bt + λ2,bt ) + κlt + π3,lt − π4,lt = 0

line l is from bus a to b

∑

a

κlt /xam −
∑

b

κl′t /xmb = 0

line l is from bus a to m, line l′ is from

bus m to b, m is not reference bus
∑

a

κlt /xam −
∑

b

κl′t /xmb + πt = 0

line l is from bus a to m, line l′ is (19)

from bus m to b, m is reference bus

κlt /xam + π1,pt − π2,pt = 0

phase shifter p is located at line l, which is from bus a to b

∑

b

( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· (λ1,bt − λ2,bt )

+
∑

p

(γ max
p · π1,pt − γ min

p · π2,pt ) +
∑

l

PLmax
l · (π3,lt + π4,lt ) = ŝt Q

λ1,bt = λ̂1,bt , b ∈ Zc, q1,bt

λ2,bt = λ̂2,bt , b ∈ Zc, q2,bt

∑

b∈Z

(−λ1,bt − λ2,bt ) ≤ 2 · |Z| q

λ1,bt , λ2,bt , π1,pt , π2,pt , π3,lt , π4,lt ≤ 0, κlt , πt free

Max
	
st =

∑

b

( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· (λ1,bt − λ2,bt )

+
∑

p

(γ max
p · π1,pt − γ min

p · π2,pt ) +
∑

l

PLmax
l · (π3,lt + π4,lt )
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S.t. (λ1,at − λ2,at ) + (−λ1,bt + λ2,bt ) + κlt + π3,lt − π4,lt = 0

line l is from bus a to b
∑

a

κlt /xam −
∑

b

κl′t /xmb = 0

line l is from bus a to m, line l′ is from

bus m to b, m is not reference bus
∑

a

κlt /xam −
∑

b

κl′t /xmb + πt = 0

line l is from bus a to m, line l′ is

from bus m to b, m is reference bus (20)

κlt /xam + π1,pt − π2,pt = 0

phase shifter p is located at line l, which is from bus a to b

−
NB∑

b=1

(λ1,bt + λ2,bt ) ≤ 1

λ1,bt = λ̂1,bt /c, λ2,bt = λ̂2,bt /c, b ∈ Zc, q1,bt , q2,bt

λ1,bt = λ̄1,bt /c, λ2,bt = λ̄2,bt /c, b ∈ Z, q1,bt , q2,bt

λ1,bt , λ2,bt , π1,pt , π2,pt , π3,lt , π4,lt ≤ 0, κlt , πt free

Theorem 2 The cut (21) is pareto optimal, given the fixed coefficients λ̂1,bt and λ̂2,bt

corresponding to all buses in the subset b ∈ Zc , which is the optimal solution of (14).

∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c− λ̂2,bt /c) · (Pit − P̂it )+
∑

b∈Z

∑

i∈U(b)

(λ̄1,bt /c− λ̄2,bt /c) ·Pit +	
st ≤ 0

(21)

The proof of Theorem 2 is provided in Appendix B. The duals to (19)–(20),
which correspond to the primal form of the original problem (11), are given in
(22)–(23). Similar to (14)–(15), the dual forms (19)–(20) introduce many more vari-
ables than their corresponding primal forms (22)–(23). Thus a higher efficiency could
be achieved by solving primal problems (22)–(23)

Min ŝt · Q +
∑

b∈Zc

(λ̂1,bt · q1,bt + λ̂2,bt · q2,bt ) + 2 · |Z| · q

S.t.
∑

l∈f(b)

PLlt −
∑

l∈t(b)

PLlt

+
( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· Q + Q1bt ≤ RQ1bt
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−
∑

l∈f(b)

PLlt +
∑

l∈t(b)

PLlt

−
( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· Q + Q2bt ≤ RQ2bt

(22)

PLlt − (θat − θbt − γabt )/xab = 0

γpt + γ max
p · Q ≤ 0

−γpt − γ min
p · Q ≤ 0

PLlt + PLmax
l · Q ≤ 0

−PLlt + PLmax
l · Q ≤ 0

θref ,t = 0

0 ≤ q, Q,q1,bt , q2,bt free

where

RQ1bt =
⎧
⎨

⎩

∑
i∈U(b)(P

max
i − ε), b ∈ SZo,∑

i∈U(b)(P
min
i + ε), b ∈ Z − SZo,

0, b ∈ Zc,

RQ2bt = −RQ1bt

Q1bt =
{−q, b ∈ Z,

q1,bt , b ∈ Zc,
Q2bt =

{−q, b ∈ Z
q2,bt , b ∈ Zc

Min st +
∑

b∈Zc

(λ̂1,bt · q1,bt + λ̂2,bt · q2,bt )/c +
∑

b∈Z

(λ̂1,bt · q1,bt + λ̂2,bt · q2,bt )/c

S.t.
∑

l∈f(b)

PLlt −
∑

l∈t(b)

PLlt − st + q1,bt ≤
∑

i∈U(b)

Pit − Dbt − Cb · PLosst

−
∑

l∈f(b)

PLlt +
∑

l∈t(b)

PLlt − st + q2,bt ≤ −
∑

i∈U(b)

Pit + Dbt + Cb · PLosst

PLlt − (θat − θbt − γabt )/xab = 0

γpt ≤ γ max
p (23)

−γpt ≤ −γ min
p

PLlt ≤ PLmax
l

−PLlt ≤ PLmax
l

θref ,t = 0

0 ≤ st , q1,bt , q2,bt free

In the implementation of (22)–(23), there is one high-density Benders cut (14)
corresponding to each subsets SZo, and different divisions of subsets SZo may con-
ceivably generate different cuts. The number of subsets may also impact the conver-
gence. The more cuts added to each iteration would result in fewer iterations between
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Fig. 2 NCUC procedure with the proposed accelerating BD algorithm

master UC and network evaluation subproblems, but the solution of master problem
may take longer because of the large number of added cuts. Here, 5 subsets are used
in our case studies.

The overall computing time is the time for solving the master UC problem and
a series of network evaluation subproblems iteratively. Fewer iterations would result
in a significant reduction in computing time. However, the calculation of additional
cuts could be time consuming. Here subproblems (18) and (22)–(23) with respect to
disjunctive subsets would be solved in parallel since they are independent, which will
reduce the overall computing time.

Figure 2 shows the flowchart for solving the NCUC problem with the proposed
accelerating BD method. In comparison to Fig. 1, if there is a network violation
(i.e. st > ε), besides the feasibility cuts obtained in (12), we also solve a set of sub-
problems and generate strong Benders cuts for accelerating the BD algorithm. We
solve (18) for each subset Bo and generate strong cuts from multiple dual solutions
as in (16). Concurrently, we also solve (22)–(23) for each subset SZo and generate
high density strong cuts as (21). Here, (18) corresponding to different subsets Bo and
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(22)–(23) corresponding to different subset SZo can be solved in parallel. All cuts
from (12), (16) and (21) are fed back to the master UC problem for further iterations.
The same stopping criterion as that of the classical BD discussed in Sect. 2 is used.
This paper does not intend to prove that high density cuts (21) are tighter than cuts
(12) generated by the classical BD method. In fact, cuts (16) and (21) generated by
the proposed method and the cut (12) generated from the classical BD are all pareto;
that is, non of them dominates the others. We observed that the classical BD usually
generates low density cuts which involve a small number of decision variables Pt .
That is, very few coefficients of Pt are nonzero. These cuts may not restrict signif-
icantly the feasible region of the master UC problem, thus more iterations may be
needed. The idea here is to generate additional strong Benders cuts for incorporating
more decision variables Pt at each generated Benders cut and strengthening the mas-
ter UC problem at each iteration. As shown in numerical examples, the incorporation
of multiple strong Benders cuts proposed here can strengthen the master UC problem
at each iteration as compared with the single cut generated by the classical BD, and
reduce the iteration number and overall computing time.

4 Case studies

Three cases are studied in this section to demonstrate the effectiveness of the pro-
posed strong Benders cuts approach in terms of offering fewer Benders iterations
and a shorter CPU time. The first case is a mathematical example which shows how
Benders cuts are generated for multiple optimal dual solutions, which is common in
large-scale power systems. The second one is a 3-bus power system which shows the
effectiveness of high-density cuts. The third example is a large-scale 5663-bus sys-
tem which shows both aspects of the previous examples. All cases are solved using
CPLEX 11.0.0 on a 2.4 GHz personal computer.

4.1 Mathematical example

The problem is described as:

Min 6 · P1 + 8 · P2 + 10 · P3

S.t. 1 · I1 ≤ P1 ≤ 10 · I1, 1 · I2 ≤ P2 ≤ 10 · I2, 1 · I3 ≤ P3 ≤ 10 · I3

P1 + P2 + P3 = 10, 2 · x1 + x2 − 4 · x4 + P1 ≤ 13

x1 + x3 − 0.5 · P2 ≤ 2, 3 · x2 + 0.5 · x3 + x4 + P3 ≤ 12.5

−x1 − x2 − x3 ≤ −7, 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 3

0 ≤ x4 ≤ 2, I1, I2, I3 ∈ {0,1}
Table 1 shows the solution procedure with the classical BD algorithm. The optimal
solution is reached after 3 iterations. The primal and dual subproblems for the first it-
eration are presented in Table 2. By solving the primal subproblem, we get an optimal
dual solution of λ1 = 0, λ2 = −1, λ3 = 0 with a feasibility Benders cut of −P2 ≤ −2.
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Table 1 Solution procedure with the classical BD algorithm

Iteration Solution Benders cuts

I1 I2 I3 P1 P2 P3

1 1 0 0 10 0 0 −P2 ≤ −2

2 1 1 0 8 2 0 0.0625 · P1 − 0.34375 · P2 + 0.25 · P3 ≤ −0.375

3 1 1 0 7.538 2.462 0 –

Table 2 Primal and dual subproblems in the first iteration

Subproblem in the primal form Subproblem in the dual form

Min s

S.t. 2 · x1 + x2 − 4 · x4 − s ≤ 13 − P̂1 λ1

x1 + x3 − s ≤ 2 + 0.5 · P̂2 λ2

3 · x2 + 0.5 · x3 + x4 − s ≤ 12.5 − P̂3 λ3

−x1 − x2 − x3 ≤ −7 π1

0 ≤ x1 ≤ 5 π2

0 ≤ x2 ≤ 4 π3

0 ≤ x3 ≤ 3 π4

0 ≤ x4 ≤ 2 π5

0 ≤ s

Max 3 · λ1 + 2 · λ2 + 12.5 · λ3 − 7 · π1 + 5 · π2

+ 4 · π3 + 3 · π4 + 2 · π5

S.t. 2 · λ1 + λ2 − π1 + π2 ≤ 0

λ1 + 3 · λ3 − π1 + π3 ≤ 0

λ2 + 0.5 · λ3 − π1 + π4 ≤ 0

−4 · λ1 + λ3 + π5 ≤ 0

−λ1 − λ2 − λ3 ≤ 1

λ1, λ2, λ3,π1,π2,π3,π4,π5 ≤ 0

The dual subproblem in Table 2 has multiple optimal solutions and the above solu-
tion is the one chosen by the LP solver. Based on the LP theory, there are infinite
optimal solutions for this dual subproblem because the linear combination of any
two optimal solutions is also an optimal solution. According to (18), we optimize
two extra problems (i.e., subset B1 including all three buses, and subset B2 includ-
ing non) as presented in Table 3. When shifted to the right-hand side, coefficients
of P1 and P3 are negative and coefficients of P2 is positive, by considering the B1

subset the most strict feasibility region of P2 is found that can be fed back to the
master problem. Similarly, by considering non in B2 subset, we find the most re-
strict feasibility region of P1 and P3. Accordingly, a new dual optimal solution is
obtained for both problems as λ1 = −0.0625, λ2 = −0.6875, λ3 = −0.25 with the
corresponding cut of 0.0625 · P1 − 0.34375 · P2 + 0.25 · P3 ≤ −0.375. The problem
is solved in two iterations with multiple strong Benders cuts generated via multiple
dual optimal solutions and shown in Table 4. Here, a reduction of 33.3% is achieved
in the number of iterations while the same global optimal solution is obtained. For
comparison, this problem is solved directly by CPLEX without decomposition. The
computation time with CPLEX is 0.11 second, with the global optimal solution of
P1 = 7.538,P2 = 2.462, x1 = 3.231, x2 = 3.769, x4 = 1.192, I1 = I2 = 1 which is
the same as that obtained by the proposed accelerating BD algorithm.
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Table 3 Subproblems for obtaining multiple dual optimal solutions as shown in (18)

Subproblem corresponding to subset B1 Subproblem corresponding to subset B2

Min s + Q

S.t. 2 · x1 + x2 − 4 · x4 − s + 3 · Q ≤ −9.99

x1 + x3 − s + 2 · Q ≤ 4.995

3 · x2 + 0.5 · x3 + x4 − s + 12.5 · Q ≤ −9.99

−x1 − x2 − x3 − 7 · Q ≤ 0

x1 + 5 · Q ≤ 5

x2 + 4 · Q ≤ 4

x3 + 3 · Q ≤ 3

x4 + 2 · Q ≤ 2

0 ≤ x1, x2, x3, x4, s Q free

Min s + Q

S.t. 2 · x1 + x2 − 4 · x4 − s + 3 · Q ≤ −1.01

x1 + x3 − s + 2 · Q ≤ 0.505

3 · x2 + 0.5 · x3 + x4 − s + 12.5 · Q ≤ −1.01

−x1 − x2 − x3 − 7 · Q ≤ 0

x1 + 5 · Q ≤ 5

x2 + 4 · Q ≤ 4

x3 + 3 · Q ≤ 3

x4 + 2 · Q ≤ 2

0 ≤ x1, x2, x3, x4, s Q free

Table 4 Solution procedure using the proposed multiple cuts from multiple optimal dual solutions

Iteration Solution Benders cuts

I1 I2 I3 P1 P2 P3

1 1 0 0 10 0 0 −P2 ≤ −2

0.0625 · P1 − 0.34375 · P2 + 0.25 · P3 ≤ −0.375

2 1 1 0 7.538 2.462 0 –

4.2 3-bus system

A 3-bus system shown in Fig. 3 with three generators, three transmission lines, and
one load is studied. Three generators are located at three buses respectively, with
parameters listed in Table 5. Transmission line capacities are also given in Fig. 3.
Reactance of all lines is 0.1 p.u. and bus 1 is the reference bus. A one-hour NCUC
problem described by (1)–(2), (6) and (8) is considered to find the optimal UC de-
cisions and generation dispatch with minimum operation cost, while satisfying the
system load of 450 MW located at bus 3. For this one-hour case study, other con-
straints, such as reserve requirement, system losses, generator minimum on/off time
constraints, and ramping up/down limits, are relaxed for the sake of discussion. The
problem is formulated as follows with constraints in each row representing the sys-
tem load balance, generation capacity limits for each unit, power balance for each
bus, dc power flow equation for each transmission line, power flow capacity limits
for each line, and the reference bus identification

Min 10 · P11 + 11 · P21 + 12 · P31

S.t. P11 + P21 + P31 = 450

100 · I11 ≤ P11 ≤ 500 · I11, 90 · I21 ≤ P21 ≤ 400 · I21

30 · I31 ≤ P31 ≤ 200 · I31

PL11 + PL31 = P11, PL21 − PL11 = P21
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Fig. 3 One-line diagram of the
3-bus system

Table 5 Generator parameters
Generator P min (MW) P max (MW) Cost function ($/MWh)

1 100 500 10

2 90 400 11

3 30 200 12

Table 6 Solution procedure
using classical BD algorithm Iteration UC solution (MW) Benders cuts

P11 P21 P31

1 450 0 0 P11 ≤ 375

2 360 90 0 −P31 ≤ −25

3 375 0 75 P11 − P21 ≤ 345

4 330 90 30 P21 − P31 ≤ 45

5 315 90 45 –

−PL21 − PL31 = P31 − 450

PL11 − (θ11 − θ21)/0.1 = 0, PL21 − (θ21 − θ31)/0.1 = 0

PL31 − (θ11 − θ31)/0.1 = 0

−115 ≤ PL11 ≤ 115, −165 ≤ PL21 ≤ 165, −260 ≤ PL31 ≤ 260

θ11 = 0, I11, I21, I31 ∈ {0,1}
Applying the classical BD algorithm as described by (10)–(12), we would need 5

iterations between the master UC and the network evaluation subproblems with only
3 transmission lines to eliminate the network violations. Four feasibility Benders cuts
are generated as shown in the last row of Table 6. The final optimal solution is to
commit all three generators with a dispatch of 315 MW, 90 MW and 45 MW. This
example shows the drawback of the classical BD algorithm, which is partly due to
the low-density cuts generated in the first two iterations. That is, only one variable is
incorporated in each cut, which would limit the algorithm’s capability for reducing
the feasible region of the master problem.

Next, we show that the proposed method would generate high-density strong Ben-
ders cuts for reducing the number of Benders iterations to 3 and the overall computing
time. First the network evaluation subproblem (11) is solved, which is shown in the
first row of Table 7. We obtain a feasibility Benders cut P11 ≤ 375 with the opti-
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Table 7 Subproblems (11), (22)–(23) corresponding to SZ1 = {2}

Subproblem (11) Min s1

S.t. PL11 + PL31 − s1 ≤ 450 λ1,11

−PL11 − PL31 − s1 ≤ −450 λ2,11

PL21 − PL11 − s1 ≤ 0 λ1,21

−PL21 + PL11 − s1 ≤ 0 λ2,21

−PL21 − PL31 − s1 ≤ −450 λ1,31

PL21 + PL31 − s1 ≤ 450 λ2,31

PL11 − (θ11 − θ21)/0.1 = 0 κ11, PL21 − (θ21 − θ31)/0.1 = 0 κ21

PL31 − (θ11 − θ31)/0.1 = 0 κ31

PL11 ≤ 115 π3,11, −PL11 ≤ 115 π4,11

PL21 ≤ 165 π3,21, −PL21 ≤ 165 π4,21

PL31 ≤ 260 π3,31, −PL31 ≤ 260 π4,31

θ11 = 0 π1, 0 ≤ s1

Subproblem (22) Min 75 · Q + 0 · q1,11 + (−1) · q2,11 + 4 · q
S.t. PL11 + PL31 + 450 · Q + q1,11 ≤ 0 λ1,11

−PL11 − PL31 − 450 · Q + q2,11 ≤ 0 λ2,11

PL21 − PL11 + 0 · Q − q ≤ 399.99 λ1,21

−PL21 + PL11 − 0 · Q − q ≤ −399.99 λ2,21

−PL21 − PL31 + (−450) · Q − q ≤ 30.01 λ1,31

PL21 + PL31 − (−450) · Q − q ≤ −30.01 λ2,31

PL11 − (θ11 − θ21)/0.1 = 0, PL21 − (θ21 − θ31)/0.1 = 0

PL31 − (θ11 − θ31)/0.1 = 0

PL11 + 115 · Q ≤ 0, −PL11 + 115 · Q ≤ 0

PL21 + 165 · Q ≤ 0, −PL21 + 165 · Q ≤ 0

PL31 + 260 · Q ≤ 0, −PL31 + 260 · Q ≤ 0

θref ,t = 0

0 ≤ q, Q,q1,11, q2,11 free

Subproblem (23) Min s1 + (−1/5) · q2,11 + (−1.263/5) · q2,21 + (−2.737/5) · q2,31

S.t. PL11 + PL31 − s1 + q1,11 ≤ 450 λ1,11

−PL11 − PL31 − s1 + q2,11 ≤ −450 λ2,11

PL21 − PL11 − s1 + q1,21 ≤ 0 λ1,21

−PL21 + PL11 − s1 + q2,21 ≤ 0 λ2,21

−PL21 − PL31 − s1 + q1,31 ≤ −450 λ1,31

PL21 + PL31 − s1 + q2,31 ≤ 450 λ2,31

PL11 − (θ11 − θ21)/0.1 = 0 κ11, PL21 − (θ21 − θ31)/0.1 = 0 κ21

PL31 − (θ11 − θ31)/0.1 = 0 κ31

PL11 ≤ 115 π3,11, −PL11 ≤ 115 π4,11

PL21 ≤ 165 π3,21, −PL21 ≤ 165 π4,21

PL31 ≤ 260 π3,31, −PL31 ≤ 260 π4,31

θref ,t = 0

0 ≤ s1, q1,11, q2,11, q1,21, q2,21, q1,31, q2,31 free
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Table 8 Solution procedure using the proposed high-density cuts

Iteration UC solution (MW) Benders cuts

P11 P21 P31

1 450 0 0 P11 ≤ 375

0.2 · P11 + 0.253 · P21 − 0.547 · P31 ≤ 75

0.2 · P11 − 0.0875 · P21 + 0.0571 · P31 ≤ 75

2 330 90 30 P21 − P31 ≤ 45

3 315 90 45 –

mal dual solution of λ2,11 = π3,11 = π3,31 = −1, all others are zero, and ŝ = 75,
which is a low density cut that only contains variable P11. Thus at the first iter-
ation, the set Z contains two buses 2 and 3, and set Zc contains bus 1, since the
corresponding dual variables for generators 2 and 3 (i.e., λ1,21, λ2,21, λ1,31, λ2,31)

are all zero. ε is assumed to be 0.01 in (22). Two optimization subproblems are
constructed according to the primal form (22) with SZ1 = {2} and SZ2 = {3} re-
spectively for the fixed λ1,11 = 0, λ2,11 = −1, ŝt = 75. The two solutions are λ1,21 =
0, λ2,21 = −1.263, λ1,31 = −2.737, λ2,31 = 0 and λ1,21 = −0.429, λ2,21 = 0, λ1,31 =
0, λ2,31 = 0.286. We apply these to the primal problem (23) which would generate
the following two high-density cuts: 0.2 · P11 + 0.253 · P21 − 0.547 · P31 ≤ 75 and
0.2 · P11 − 0.0875 · P21 + 0.0571 · P31 ≤ 75. Here c is equal to 5. In Table 7, we give
the detailed mathematical formulations for subproblems (22)–(23) corresponding to
SZ1 = {2}.

These two cuts are high density because decision variables in the master problem,
P11,P21 and P31, are all incorporated in these two cuts; thus they can better restrict
the feasible region of the master problem. Appending these three feasibility cuts to the
master problem, a solution of 330 MW, 90 MW and 30 MW is obtained. Repeating
the above procedures by solving the network evaluation subproblem (11), we obtain
the feasibility Benders cut P21 − P31 ≤ 45 for the second iteration, with λ2,21 =
λ1,31 = κ31 = −0.5, κ11 = κ21 = 0.5,π3,21 = −1.5, all others are zero, and ŝ = 7.5.
Thus, at this iteration, the set Z contains only bus 1 and set Zc contains buses 2 and 3.
Here, one optimization problem is constructed according to the primal form (22), with
SZ1 = {1}, for the fixed λ1,21 = 0, λ2,21 = −0.5, λ1,31 = −0.5, λ2,31 = 0, ŝt = 7.5.
The solution is λ1,11 = 0, λ2,11 = 0, which means no more high-density cuts can
be generated at this iteration, and there is no need to further optimize the primal
form (23). If we append the feasibility cut P21 − P31 ≤ 45 obtained in this iteration
to the master problem, a solution of 315 MW, 90 MW and 45 MW is obtained.

If we repeat the above procedure, the optimal objective value of (11) will be equal
to zero which means that there will be no more violations in the network evaluation
subproblem. Thus the current solution is optimal and the BD procedure stops. The
procedure is shown in Table 8.

Benders cuts presented in the last column of Tables 6 and 8 are mapped onto the
P21 − P31 plane for comparison, which are shown in Figs. 4 and 5, respectively.
The mapping is processed by substituting P11 with 450 − P21 − P31, which is de-
rived from the system power balance constraint. The domains of P21 and P31, {P21 =
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Fig. 4 Benders cuts from the classical BD algorithm mapped onto P21 − P31 plane

Fig. 5 Benders cuts from the proposed method mapped onto P21 − P31 plane

0,P31 = 0} ∪ {90 ≤ P21 ≤ 400,P31 = 0} ∪ {P21 = 0,30 ≤ P31 ≤ 200} ∪ {90 ≤ P21 ≤
400,30 ≤ P31 ≤ 200}, are also shown in Figs. 4 and 5. The Benders cuts 1–4 cor-
respond to the four cuts in Tables 6 and 8 respectively. The optimal points p1 − p5
obtained at each iteration in Table 6 and optimal points p1 − p3 at each iteration
in Table 8 are also shown. Here, Cuts 1 and 4 are the same in both methods. The
Cut 3 coincides in the two methods, i.e., by substituting P11 with 450 − P21 − P31,
the Cut 3 in Table 6 becomes 2P21 + P31 ≥ 105 and the Cut 3 in Table 8 becomes
0.2875P21 +0.1429P31 ≥ 15, which is 2.0119P21 +P31 ≥ 104.9685. The Cut 2 from
Table 8 provides a tighter formulation than Cut 2 from Table 6, i.e., it passes through
the domain boundary {90 ≤ P21 ≤ 400,P31 = 0} and restricts a tighter feasibility
region. The meshed areas in Figs. 4 and 5 show the feasibility regions at the final
iteration bounded by Benders cuts and the domain. In Fig. 5, the high density Cuts 2
and 3 generated at the first iteration would tighten the feasibility region of the mas-
ter problem. These two high density cuts would eliminate the two feasible solutions
obtained in the classical BD algorithm and shown as p2 and p3 in Fig. 4; thus they
would reduce the number of iterations by two as compared with that of the classical
BD algorithm. By comparison, the proposed method outperforms the classical BD
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Table 9 Solution procedure using the proposed method with tuning parameter

Iteration UC Solution (MW) Benders cuts

P11 P21 P31

1 450 0 0 P11 ≤ 375

0.2 · P11 + 0.0947 · P21 − 0.1053 · P31 ≤ 75

0.2 · P11 − 0.0875 · P21 + 0.0571 · P31 ≤ 75

2 330 90 30 P21 − P31 ≤ 45

3 315 90 45 –

algorithm in the sense that it would offer the same reduced feasible region in fewer
iterations and smaller overall computing time.

In the above study, 2 · |Z| is used as the right-hand-side for the last inequality
constraint in (22) to guarantee that the problem (22) is bounded. In comparison, we
use 1 instead of 2 · |Z| to show the impact of this parameter on convergence. Table 9
shows that the problem is solved in three iterations and the same global optimal solu-
tion is derived. As compared with Table 8, when using 1 instead of 2 · |Z|, the strong
cuts are not exactly the same but the UC solution at iteration 2 is the same as that
in Table 8. The total number of iterations and generated cuts are the same in the two
cases with the same final solution, which shows that the parameter 2 · |Z| does not
significantly impact the convergence in this case. This small problem is also directly
solved by CPLEX with the computation time of 0.04 second and the global optimal
solution of P11 = 315,P21 = 90,P31 = 45, I11 = I21 = I31 = 1,PL11 = 75,PL21 =
165,PL31 = 240, θ11 = 0, θ21 = −7.5, and θ31 = −24, which is the same as that ob-
tained by the proposed accelerating BD algorithm. For Cases 4.1 and 4.2, the purpose
of reporting the solutions with CPLEX is to show the effectiveness of the proposed
accelerating BD algorithm. In the following Case 4.3, we will see that the NCUC
problem for large-scale power systems may take much longer to be solved directly
by CPLEX, and the proposed accelerating BD algorithm can efficiently solve the
problem by delivering good enough solutions within acceptable time frames.

4.3 5663-bus system

A large-scale system with 599 generators, 5663 buses, 7036 transmission lines, and
251 phase shifters is used to illustrate the effectiveness of the proposed methodology.
A 24-hour NCUC problem is considered to find the optimal UC decisions and gen-
eration dispatch with the minimum operation cost, while satisfying the system loads,
reserve requirements, and losses for a 24-hour horizon shown in Fig. 6. All UC and
dc transmission network constraints described by (2)–(8) are considered in this case.
Table 10 shows the complexity of the large-scale power system optimization prob-
lem. It is noted that the number of dc network constraints in (8) (excluding upper and
lower limits for phase shifters and transmission flow variables) is even larger than
the number of UC constraints in (2)–(7), which indicates that the decomposition is
the only option for handling large-scale power system optimization problems with a
substantial network structure.
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Fig. 6 System loads, reserves, and losses for a 24-hour horizon

Table 10 Complexity of the 5663-bus system

# of binary # of continuous # of UC constraints # of dc network

variables variables in (2)–(7) constraints in (8)

Peak hour problem 1,797 19,318 10,323 12,700

24-hour problem 43,128 457,608 274,268 304,800

• Case 1: Comparison of the proposed method with the classical BD algorithm at the
peak hour 16 with a peak load of 62,000 MW.

• Case 2: Comparison of the proposed method with the classical BD algorithm for
the 24-hour study.

• Case 3: Appending the initial cuts and studying its impact on convergence.

Case 1: The peak hour is studied using the classical BD algorithm (12) and the
proposed strong Benders cuts (16) and (21). Figure 7 shows the NCUC convergence.
The proposed method would give a steeper ascent to the violation and speed up the
convergence. Table 11 compares the number of iterations and cuts, total CPU time,
and the operation cost between the classical BD algorithm and the proposed strong
Benders cuts method. We also provide the solution by using the LSF for comparison.
The CPU time is based on multiple CPUs, which enables the parallel calculation
of hourly network checking subproblems, and the parallel calculation of (18) for all
subset Bo and (22)–(23) for all subset SZo. The classical BD algorithm would need
18 iterations with a total of 17 cuts and a total CPU time of 118 s, most of which
is consumed by iterations between UC and hourly network evaluation subproblems.
In comparison, with the proposed strong Benders cuts, only 8 iterations are needed
and the total CPU time is 25 s, which is almost one-fifth of the time used by the
classical BD algorithm. A total of 23 cuts are generated in which 13 are from multiple
optimal dual solutions and another 3 for enhancing the cut density. For this case, the
difference between the proposed method and the classical BD algorithm is even more
evident. The proposed method converges more rapidly in terms of the total number
of iterations by restricting the feasible region of the master problem at each iteration
via strong Benders cuts.
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Fig. 7 Classical and multiple strong Benders cuts for the peak hour

Table 11 Comparison of the results in Case 1

# of iterations # of cuts CPU time (s) Operation cost ($)

Classical BD algorithm 18 17 118 1,745,451.8

LSF 4 129 11 1,747,353.5

Multiple strong Benders cuts 8 23 25 1,777,264.2

CPLEX Directly – – 67 1,747,360.4

The violation threshold of 0.1 MW is used here. The LSF uses fewer itera-
tions and less CPU time than the strong Benders cuts method for this one-hour
NCUC problem. However, LSF introduces many more network evaluation con-
straints than the strong Benders cuts method, which will cause a longer study pe-
riod for the master UC problem since the master UC is a NP-hard problem. As
shown in Cases 2–3, the CPU time for LSF and strong Benders cuts are compara-
ble. The last row of Table 11 shows the operation cost for the three methods. The
three solutions are suboptimal since the problem is NP-hard. In this case, the oper-
ation cost based on the proposed multiple strong Benders cuts is about 1.82% (i.e.
(1,777,264.2 − 1,745,451.8)/1,745,451.8) higher than that of the classical BD
algorithm. However, the proposed multiple strong Benders cut method reduces of
the number of iterations by 55.56% and the CPU time by 78.81%, and provides a
similar operation cost as compared to the classical BD algorithm. Hence the pro-
posed method outperforms the classical BD algorithm by providing a good enough
solution with a much smaller computation time. This peak hour NCUC problem can
be directly solved by CPLEX in 67 seconds. The objective is $1,747,360.4 with the
MIP gap tolerance of 0.05%. In comparison to the solutions given in Table 11, the
proposed multiple strong Benders cuts obtained an operation cost that is 1.71% (i.e.
(1,777,264.2 − 1,747,360.4)/1,747,360.4) higher than that of CPLEX, while sav-
ing a computation time of more than 62.69% (i.e. (67 − 25)/67).

Case 2: In this case, the system is studied for a 24-hour period. Figure 8 compares
the NCUC convergence of the classical BD with that of the proposed strong Benders
cuts method. The classical BD algorithm takes 27 iterations vs. 16 for the proposed
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Fig. 8 Classical and strong Benders cuts for the 24-hour case study

Fig. 9 CPU time at each
iteration in Case 2

Table 12 Comparison of the results for the 24-hour study

# of iterations # of cuts CPU time (s) Operation cost ($)

Classical BD algorithm 27 409 3008 28,652,220.7

LSF 7 1693 1713 28,607,073.8

Multiple strong Benders cuts 16 881 2159 28,660,027.6

strong Benders cuts method. A total of 881 cuts are generated for limiting the fea-
sible region of the master problem during the iterative process in which 491 strong
cuts are derived from the multiple optimal dual solutions and another 110 for enhanc-
ing the cut density. Table 12 compares the number of iterations and cuts, total CPU
time, and the operation cost of the classical BD algorithm, the strong Benders cuts,
and the LSF method. The proposed strong Benders cuts method reduces the number
of iterations by 40.74% (i.e. (27 − 16)/27) and saves the CPU time by 28.22% (i.e.
(3008 − 2159)/3008) as compared to the classical BD algorithm. In this case, the
operation cost obtained by LSF is the lowest, and the cost by multiple strong Benders
cuts is about 0.027% (i.e. (28,660,027.6 − 28,652,220.7)/28,652,220.7) higher
than that of the classical BD algorithm. Figure 9 shows that it takes more time to solve
the master UC at each iteration with the LSF method since the LSF introduces many
more constraints than the strong Benders cuts method. The LSF introduces 1,693
network evaluation constraints vs. 812 in the strong Benders cuts method. Although
LSF takes 7 iterations, which is less than half of the 16 for the strong Benders cuts

 Author's personal copy 



Accelerating the Benders decomposition for network-constrained unit 367

Fig. 10 Classical and strong Benders cuts for the 24-hour study with initial cuts

method, the required CPU time of LSF is only 20.66% (i.e. (2159 − 1713)/2159)
smaller than that of the strong Benders cuts method. When solving the master UC
problem successively, the solution at the previous iteration can be used as a starting
point for the existing UC. Figure 9 shows that a smaller CPU time is used progres-
sively at each iteration of the BD algorithm since only a limited number of Benders
cuts are introduced into the master problem at each iteration and the solution at the
previous iteration always provides a good starting point. In contrast, the LSF method
introduces more constraints at each iteration, all generation dispatch decision vari-
ables are considered which would make the problem more difficult to be solved, and
the solution of previous iteration may not be used as the starting point. Hence, the
CPU time for each LSF iteration is not dramatically reduced as compared with that
of the BD algorithm. This 24-hour NCUC problem can not be solved without de-
composition by the current version of CPLEX. It takes 2,389 seconds to just solve
the root node LP problem, which is generated by relaxing integrality requests of the
NCUC problem. Furthermore, after running for more than 3 hours, the CPLEX could
not locate a feasible solution to the NCUC problem at any MIP gap level.

Case 3: A good set of effective initial Benders cuts could reduce the number of
iterations between the master problem and subproblems [10]. In this case, the hourly
NCUCs are first solved in parallel while ignoring startup and shutdown costs and
coupling constraints among UC hours (e.g. min on/off time and ramping up/down
rate limits) to generate an initial set of Benders cuts [18]. The Benders cuts resulting
from the hourly NCUC solution are considered as initial Benders cuts for the 24-hour
NCUC solution. Figure 10 shows the NCUC convergence for the classical BD and the
strong Benders cuts methods with 603 initial Benders cuts generated by solving the
hourly NCUC. The classical BD algorithm takes 12 iterations with a total of 90 cuts.
The strong Benders cuts method takes 6 iterations with a total of 294 cuts in which
185 strong cuts are derived from the multiple optimal dual solutions and another 26
are high-density cuts. For a fair comparison, the same set of initial Benders cuts are
adopted in the LSF method. The difference between the three operation costs is less
than 1% (i.e., 28,566,540.3−28,548,341.2)/28,548,341.2 = 0.064%). Compared
with the solutions given in Tables 12, 13 shows that the inclusion of initial Benders
cuts would dramatically reduce the number of iterations and cuts for both the classical
BD algorithm and the strong Benders cuts methods.
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Table 13 Comparison of the results for the 24-hour study with initial cuts

# of iterations # of cuts CPU time (s) Operation cost ($)

Classical BD algorithm 12 90 2797 28,548,341.2

LSF 5 711 1665 28,566,540.3

Strong Benders cuts 6 294 1584 28,554,679.8

The number of iterations is reduced by 55.56% and 62.5% respectively (i.e.,
(27 − 12)/27 and (16 − 6)/16), and the number of cuts is decreased by about
78.00% (i.e., (409 − 90)/409) for the classical BD algorithm and 66.63% (i.e.,
(881 − 294)/881) for the strong Benders cuts. However, the total CPU time for the
classical BD algorithm is decreased only by about 7% (i.e., (3008−2797)/3008) and
21.63% (i.e., (2159 − 1584)/2159) for the strong Benders cuts. Here, the total CPU
time reduction is not significant as may be expected because by appending 603 ini-
tial cuts, the required CPU time for each UC master problem would be longer which
would diminish the saving in time when initial cuts are used. With initial cuts, the
LSF takes 5 iterations as compared with 6 for the strong Benders cuts method, and
the CPU time for these two methods are comparable in this case. The strong Benders
cuts method would take 4.86% (i.e., (1665 − 1584)/1665) less CPU time than the
LSF method.

5 Conclusions

This paper proposed a method for generating multiple strong Benders cuts to accel-
erate the convergence of NCUC with BD. The generated strong Benders cuts are
proved to be pareto optimal. Numerical tests show that as compared to the classi-
cal BD algorithm, multiple strong Benders cuts generated by the proposed method
result in a significant reduction in terms of total number of iterations and the CPU
time. For large systems, the proposed multiple strong Benders cuts method and the
LSF method are comparable in terms of good enough solutions and CPU time. The
proposed multiple strong Benders cuts method also requires fewer cuts than that of
the LSF methods. The proposed strong Benders cuts method can be easily extended
to other applications of BD on large-scale optimization problems in power systems
operation, maintenance and planning.

Appendix A

Proof for Theorem 1 Suppose to the contrary that (16) is not pareto optimal. That is,
there exists a cut (A.1) that dominates (16)

NB∑

b=1

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · Pit + ŝt ≤ 0 (A.1)
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Then from Definition 2, it is true that for all Pt in their domain of {0, [Pmin,Pmax]}
{[

NB∑

b=1

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · Pit + ŝt

]
−

[
NB∑

b=1

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · Pit + ŝt

]}
≤ 0

(A.2)
Thus (A.2) is true for Pit = P max

i − ε,∀i ∈ U(b), b ∈ Bo, and Pit = P min
i + ε,∀i ∈

U(b), b /∈ Bo, which is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · (P max
i − ε)

+
∑

b/∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · (P min
i + ε)

]

−
[∑

b∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b/∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ 0 (A.3)

However, solving the maximization problem (15), we obtain the optimal objective
value as

∑
b∈Bo

∑
i∈U(b)(λ̃1,bt − λ̃2,bt ) · (P max

i − ε)+∑
b/∈Bo

∑
i∈U(b)(λ̃1,bt − λ̃2,bt ) ·

(P min
i + ε), which means

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · (P max
i − ε)

+
∑

b/∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · (P min
i + ε)

]

−
[∑

b∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b/∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≥ 0 (A.4)

Using (A.3) and (A.4), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · (P max
i − ε)

+
∑

b/∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · (P min
i + ε)

]

−
[∑

b∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b/∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (A.5)
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Since (A.1) dominates (16), according to Definition 1 there must exits a P̃ in the do-
main of {0, [Pmin,Pmax]} by which the strict inequality of (A.2) is satisfied as shown
in (A.6)

{[
NB∑

b=1

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · P̃i

]
−

[
NB∑

b=1

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · P̃i

]}
< 0 (A.6)

Next we show that there exits a scalar θ > 1 such that θ · (P max
i − ε) + (1 − θ) · P̃i

and θ · (P min
i + ε) + (1 − θ) · P̃i are both in the range of {0, [Pmin,Pmax]}.

1. If P̃i = 0, θ · (P max
i − ε) + (1 − θ) · P̃i = θ · (P max

i − ε) and θ · (P min
i + ε) +

(1−θ)·P̃i = θ ·(P min
i +ε). Thus for small 0 ≤ ε and 1 < θ ≤ min{ P max

i

P max
i −ε

,
P max

i

P min
i +ε

},
θ · (P max

i − ε)+ (1 − θ) · P̃i and θ · (P min
i + ε)+ (1 − θ) · P̃i are both in the range

of [Pmin,Pmax].
2. If P̃i ∈ [P min

i , P max
i ], for θ that satisfies 1 < θ ≤ P max

i −P min
i

P max
i −P min

i −ε
, we have θ

θ−1 ·
ε ≥ P max

i − P min
i . Thus θ

θ−1 · ε ≥ P max
i − P min

i ≥ P max
i − P̃i , and we have

θ · (P max
i − ε) + (1 − θ) · P̃i − P max

i = (θ − 1) · (P max
i − P̃ − θ

θ−1 · ε) ≤ 0,

which derives θ · (P max
i − ε) + (1 − θ) · P̃i ≤ P max

i . For small 0 ≤ ε, it usu-
ally holds that P max

i − P min
i − ε ≥ ε since P max

i and P min
i are usually in tens

and hundreds of MW range, and an ε of 0.01–0.1 MW is used in this paper.

Thus 1 < θ ≤ P max
i −P min

i

P max
i −P min

i −ε
≤ P max

i −P min
i

ε
, and we have θ · (P max

i − ε) + (1 − θ) ·
P̃i − P min

i ≥ θ · (P max
i − ε) + (1 − θ) · P max

i − P min
i = P max

i − P min
i − θ · ε ≥ 0,

which derives P min
i ≤ θ · (P max

i − ε) + (1 − θ) · P̃i . Similarly, we derive that
θ · (P min

i + ε) + (1 − θ) · P̃i is in the range of [Pmin,Pmax].
Based on the above discussion, we multiply (A.5) by θ and (A.6) by (1 − θ) which is
negative and preserves the inequality, and add them up to derive

∑

b∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · [θ · (P max
i − ε) + (1 − θ) · P̃i]

+
∑

b/∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · [θ · (P min
i + ε) + (1 − θ) · P̃i]

>
∑

b∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · [θ · (P max
i − ε) + (1 − θ) · P̃i]

+
∑

b/∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · [θ · (P min
i + ε) + (1 − θ) · P̃i] (A.7)

According to (A.7)

Pit =
{

θ · (P max
i − ε) + (1 − θ) · P̃i , ∀i ∈ U(b), b ∈ Bo

θ · (P min
i + ε) + (1 − θ) · P̃i , ∀i ∈ U(b), b /∈ Bo
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Bo

∑

i∈U(b)

(λ̂1,bt − λ̂2,bt ) · (Pit − P̂it )

+
∑

b/∈Bo

∑

i∈U(b)

(λ̃1,bt − λ̃2,bt ) · Pit + ŝt

]

−
[∑

b∈Bo

∑

i∈U(b)

(λ̂1,bt − λ̂2,bt ) · (Pit − P̂it )

+
∑

b/∈Bo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · Pit + ŝt

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

> 0

which is inconsistent with (A.2). Hence our assumption of (16) not being pareto
optimal is untenable. Thus (16) is pareto optimal. �

Appendix B

The following Theorem B.1 is a prerequisite for the proof of Theorem 2.

Theorem B.1 Let {λ̂1,bt /c, λ̂2,bt /c, b ∈ Zc, λ̄1,bt /c, λ̄2,bt /c, b ∈ Z} together with
{π̄1,pt , π̄2,pt , π̄3,lt , π̄4,lt , π̄t , κ̄lt } be an optimal solution of (20) with the objective
value of

	
st . Thus ŝ ≤ c · 	

st is satisfied, where ŝt is the optimal objective value of
(11) used in (19).

Proof for Theorem B.1 First let us show that the following problem (B.1) has the
optimal objective value of c · 	

st . Assume the optimal objective value of (B.1) is O

Max
∑

b

( ∑

i∈U(b)

Pit − Dbt − Cb · PLosst

)
· (λ1,bt − λ2,bt )

+
∑

p

(γ max
p · π1,pt − γ min

p · π2,pt ) +
∑

l

PLmax
l · (π3,lt + π4,lt )

S.t. (λ1,at − λ2,at ) + (−λ1,bt + λ2,bt ) + κlt + π3,lt − π4,lt = 0

line l is from bus a to bus b∑

a

κlt /xam −
∑

b

κl′t /xmb = 0

line l is from bus a to bus m, line l′ is from bus m to bus b,

m is not reference bus∑

a

κlt /xam −
∑

b

κl′t /xmb + πt = 0
(B.1)

line l is from bus a to bus m, line l′ is from bus m to bus b,

m is reference bus

κlt /xab + π1,pt − π2,pt = 0

phase shifter p is located at line l, which is from bus a to bus b

−
∑

b∈Z

(λ1,bt + λ2,bt ) ≤ 2 · |Z|
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λ1,bt = λ̂1,bt , λ2,bt = λ̂2,bt , b ∈ Zc

λ1,bt = λ̄1,bt , λ2,bt = λ̄2,bt , b ∈ Z

λ1,bt , λ2,bt , π1,pt , π2,pt , π3,lt , π4,lt ≤ 0, κlt , πt free

It is obvious that {λ̂1,bt , λ̂2,bt , b ∈ Zc, λ̄1,bt , λ̄2,bt , b ∈ Z} together with {c · π̄1,pt , c ·
π̄2,pt , c · π̄3,lt , c · π̄4,lt , c · π̄t , c · κ̄lt } is a feasible solution of (B.1), with the objective
value of c · 	

st . Thus the optimal objective value of (B.1) is not less than c · 	
st , i.e.,

O ≥ c · 	
st (B.2)

Assume {λ̂1,bt , λ̂2,bt , b ∈ Zc, λ̄1,bt , λ̄2,bt , b ∈ Z} together with {π ′
1,pt , π

′
2,pt , π

′
3,lt ,

π ′
4,lt , π

′
t , κ

′
lt } is the optimal solution of (B.1) with the optimal objective value of O .

Thus it is obvious that {λ̂1,bt /c, λ̂2,bt /c, b ∈ Zc, λ̄1,bt /c, λ̄2,bt /c, b ∈ Z} together with
{π ′

1,pt /c,π
′
2,pt /c,π

′
3,lt /c,π

′
4,lt /c,π

′
t /c, κ

′
lt /c} is a feasible solution of (20) with the

objective value of O/c. Since the optimal objective value to (20) is
	
st , we have

O/c ≤ 	
st (B.3)

Using (B.2) and (B.3), we conclude that O = c · 	
st . That is the optimal objective

value of (B.1) O is equal to c · 	
st . Comparing (B.1) with (19), the optimal solution

of (19), which is λ̂1,bt λ̂2,bt for b ∈ Zc and λ̄1,bt λ̄2,bt for b ∈ Z together with the
corresponding {π ′

1,pt , π
′
2,pt , π

′
3,lt , π

′
4,lt , π

′
t , κ

′
lt } is a feasible solution to (B.1) as this

solution set satisfies all constraints in (B.1) with the objective value of ŝt . Thus, ŝt is
no larger than the optimal objective value c · 	

st , that is ŝ ≤ c · 	
st . �

Proof for Theorem 2 Suppose that contrary to our assumption, (21) is not pareto
optimal. That is, there exists a cut (B.4) that dominates (21)

∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (Pit − P̂it ) +
∑

b∈Z

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · Pit + 	
st ≤ 0

(B.4)
Then from Definition 2, it is true that for all Pt in the domain of {0, [Pmin,Pmax]}, we
have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (Pit − P̂it )

+
∑

b∈Z

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · Pit + 	
st

]

−
[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (Pit − P̂it )

+
∑

b∈Z

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · Pit + 	
st

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ 0 (B.5)

Thus (B.5) is true for Pit = P̂it ,∀i ∈ U(b), b ∈ Zc,Pit = P max
i − ε,∀i ∈ U(b), b ∈

SZo, and Pit = (P min
i + ε),∀i ∈ U(b), b ∈ {Z − SZo}, which indicates that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ∑

b∈SZo

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P min
i + ε)

]

−
[ ∑

b∈SZo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ 0 (B.6)

With (B.4), {λ̂1,bt /c, λ̂2,bt /c, b ∈ Zc, λ′
1,bt , λ

′
2,bt , b ∈ Z} together with {π ′

1,pt , π
′
2,pt ,

π ′
3,lt , π

′
4,lt , π

′
t , κ

′
lt } is an optimal solution of (20) since its corresponding objective

value is also
	
st . According to Theorem B.1, ŝ ≤ c ·	

st , thus there must exit a solution of
{λ̂1,bt /c, λ̂2,bt /c, b ∈ Zc, λ′

1,bt , λ
′
2,bt , b ∈ Z} together with {π ′′

1,pt , π
′′
2,pt , π

′′
3,lt , π

′′
4,lt ,

π ′′
t , κ ′′

lt } for (20), which has the objective value of ŝ/c. Thus {λ̂1,bt , λ̂2,bt , b ∈ Zc, c ·
λ′

1,bt , c · λ′
2,bt , b ∈ Z} together with {c · π ′′

1,pt , c · π ′′
2,pt , c · π ′′

3,lt , c · π ′′
4,lt , c · π ′′

t , c · κ ′′
lt }

is a feasible solution of (19).
Since {λ̂1,bt , λ̂2,bt , b ∈ Zc, λ̄1,bt , λ̄2,bt , b ∈ Z} is the optimal solution of (19), and

{λ̂1,bt , λ̂2,bt , b ∈ Zc, c · λ′
1,bt , c · λ′

2,bt , b ∈ Z} is one of its feasible solutions, we learn
that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ∑

b∈SZo

∑

i∈U(b)

(λ̄1,bt − λ̄2,bt ) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ̄1,bt − λ̄2,bt ) · (P min
i + ε)

]

−
[ ∑

b∈SZo

∑

i∈U(b)

(c · λ′
1,bt − c · λ′

2,bt ) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(c · λ′
1,bt − c · λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≥ 0 (B.7)

Multiplying both sides of (B.7) by c, we get (B.8) where c = ∑
b∈NZ(−λ̂1,bt −

λ̂2,bt ) + 2 · |Z| is a positive constant

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ∑

b∈SZo

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P min
i + ε)

]

−
[ ∑

b∈SZo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≥ 0 (B.8)

 Author's personal copy 



374 L. Wu, M. Shahidehpour

Using (B.6) and (B.8), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ∑

b∈SZo

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P min
i + ε)

]

−
[ ∑

b∈SZo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (B.9)

Since (B.4) dominates (21), according to the Definition 1 there must exits a P̃ in the
domain of {0, [Pmin,Pmax]} which satisfies the strict inequality of (B.5) as shown in
(B.10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (P̃i − P̂it )

+
∑

b∈Z

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · P̃i + 	
st

]

−
[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (P̃i − P̂it )

+
∑

b∈Z

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · P̃i + 	
st

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

< 0 (B.10)

Applying P̃ to (B.9), we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (P̃i − P̂it )

+
∑

b∈SZo

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · (P min
i + ε)

]

−
[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (P̃i − P̂it )

+
∑

b∈SZo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P max
i − ε)

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · (P min
i + ε)

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (B.11)

Theorem 1 points out that there exits a scalar θ > 1 such that θ · (P max
i −ε)+ (1−θ) ·

P̃i and θ ·(P min
i +ε)+(1−θ) · P̃i are in the range of {0, [Pmin,Pmax]}. Thus multiply-

ing (B.11) by θ and (B.10) by (1 − θ) which is negative and preserves the inequality,
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and adding the two quantities up, we get

∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (P̃i − P̂it )

+
∑

b∈SZo

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · [θ · (P max
i − ε) + (1 − θ) · P̃i]

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · [θ · (P min
i + ε) + (1 − θ) · P̃i]

>
∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (P̃i − P̂it )

+
∑

b∈SZo

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · [θ · (P max
i − ε) + (1 − θ) · P̃i]

+
∑

b∈{Z−SZo}

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · [θ · (P min
i + ε) + (1 − θ) · P̃i] (B.12)

Equation (B.12) indicates that

Pit =
⎧
⎨

⎩

P̃i ∀i ∈ U(b), b ∈ Zc

θ · (P max
i − ε) + (1 − θ) · P̃i , ∀i ∈ U(b), b ∈ SZo

θ · (P min
i + ε) + (1 − θ) · P̃i , ∀i ∈ U(b), b ∈ {Z − SZo}

then
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (Pit − P̂it )

+
∑

b∈Z

∑

i∈U(b)

(λ̄1,bt /c − λ̄2,bt /c) · Pit + 	
st

]

−
[∑

b∈Zc

∑

i∈U(b)

(λ̂1,bt /c − λ̂2,bt /c) · (Pit − P̂it )

+
∑

b∈Z

∑

i∈U(b)

(λ′
1,bt − λ′

2,bt ) · Pit + 	
st

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

> 0

which is inconsistent with (B.5) and shows that our assumption that (21) is not pareto
optimal is untenable. Thus (21) is pareto optimal. �

References

1. Shahidehpour, M., Yamin, H., Li, Z.: Market Operations in Electric Power Systems. Wiley, New York
(2002)

2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer.
Math. 4, 238–252 (1962)

3. Fu, Y., Shahidehpour, M., Li, Z.: Security-constrained unit commitment with ac constraints. IEEE
Trans. Power Syst. 20, 1538–1550 (2005)

 Author's personal copy 



376 L. Wu, M. Shahidehpour

4. Shahidehpour, M., Fu, Y.: Benders decomposition—applying Benders decomposition to power sys-
tems. IEEE Power Energy Mag. 3, 20–21 (2005)

5. Guan, X., Guo, S., Zhai, Q.: The conditions for obtaining feasible solutions to security-constrained
unit commitment problems. IEEE Trans. Power Syst. 20, 1746–1756 (2005)

6. Martínez-Crespo, J., Usaola, J., Fernández, J.L.: Security-constrained optimal generation scheduling
in large-scale power systems. IEEE Trans. Power Syst. 21, 321–332 (2006)

7. Alguacil, N., Conejo, A.J.: Multiperiod optimal power flow using Benders decomposition. IEEE
Trans. Power Syst. 15, 196–201 (2000)

8. Wu, L., Shahidehpour, M., Liu, C.: MIP-based post-contingency corrective action with quick-start
units. IEEE Trans. Power Syst. 24, 1898–1899 (2009)

9. Li, Y., McCalley, J.D.: A general Benders decomposition structure for power system decision prob-
lems. In: EIT 2008 IEEE International Conference, pp. 72–77 (2008)

10. Magnanti, T.L., Wong, R.T.: Accelerating Benders decomposition: algorithmic enhancement and
model selection criteria. Oper. Res. 29, 464–484 (1981)

11. McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for mixed integer program-
ming. Manag. Sci. 24, 312–319 (1977)

12. Côté, G., Laughton, M.A.: Large-scale mixed integer programming: Benders-type heuristics. Eur. J.
Oper. Res. 16, 327–333 (1984)

13. Zakeri, G., Philpott, A.B., Ryan, D.M.: Inexact cuts in Benders decomposition. SIAM J. Optim. 10,
643–657 (2000)

14. Fischetti, M., Salvagnin, D., Zanette, A.: Minimal infeasible subsystems and Benders cuts.
http://www.dei.unipd.it/~fisch/papers/Benders.pdf (2010). Accessed 12 April 2010

15. Rei, W., Gendreau, M., Cordeau, J.F., Soriano, P.: Accelerating Benders decomposition by local
branching. Informs J. Comput. 21, 333–345 (2009)

16. Fu, Y., Li, Z., Shahidehpour, M.: Accelerated Benders decomposition in SCUC. IEEE Tran. Power
Syst. (2010)

17. CPLEX 11.0. User’s manual. http://www-01.ibm.com/software/integration/optimization/cplex/
(2010). Accessed 12 April 2010

18. Fu, Y., Shahidehpour, M.: Fast SCUC for large-scale power systems. IEEE Trans. Power Syst. 22,
2144–2151 (2007)

19. Li, T., Shahidehpour, M.: Price-based unit commitment: a case of Lagrangian relaxation versus mixed
integer programming. IEEE Trans. Power Syst. 20, 2015–2025 (2005)

 Author's personal copy 

http://www.dei.unipd.it/~fisch/papers/Benders.pdf
http://www-01.ibm.com/software/integration/optimization/cplex/

	Accelerating the Benders decomposition for network-constrained unit commitment problems
	Abstract
	Introduction
	NCUC problem formulation and solution methodology
	Accelerating BD via multiple strong Benders cuts
	Generate multiple strong Benders cuts from multiple optimal dual solutions
	Generate multiple strong Benders cuts by enhancing the density of cuts

	Case studies
	Mathematical example
	3-bus system
	5663-bus system

	Conclusions
	Appendix A
	Appendix B
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


