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A Hybrid Model for Day-Ahead Price Forecasting
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Abstract—This paper presents a hybrid time-series and adap-
tive wavelet neural network (AWNN) model for the day-ahead elec-
tricity market clearing price forecast. Instead of using price se-
ries, one-period continuously compounded return series is used
to achieve more attractive statistical properties. The autoregres-
sive moving average with exogenous variables (ARMAX) model
is used to catch the linear relationship between price return se-
ries and explanatory variable load series, the generalized autore-
gressive conditional heteroscedastic (GARCH) model is used to un-
veil the heteroscedastic character of residuals, and AWNN is used
to present the nonlinear, nonstationary impact of load series on
electricity prices. The Monte Carlo method is adopted to generate
more evenly distributed random numbers used for time series and
AWNN models to accelerate the convergence. Several criteria such
as average mean absolute percentage error (AMAPE) and the vari-
ance of forecast errors are used to assess the model and measure
the forecasting accuracy. Illustrative price forecasting examples of
the PJM market are presented to show the efficiency of the pro-
posed method.

Index Terms—AMAPE, ARMAX, AWNN, day-ahead price fore-
cast, GARCH, Monte Carlo, time series method, variance of fore-
cast errors.

NOMENCLATURE
Variables:

n Noise process.

aij, bi; Translation and dilation parameters of
wavelets.
Constant item in the GARCH model.

d Differential order.

e Bias of the output node in AWNN.

hy Conditional variance of residual series at time
t.

i, J Index.

k AWNN training iteration index.

m Number of input layer of AWNN.

MS Eéi Mean squared error (MSE) on testing set at
iteration k£ for AWNN.

MS E{f MSE on validation set at iteration k for

AWNN.
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Constants:

B

F()
Lt
P
R,
Ry (1)
T

Average MSE on validation set until iteration
k for AWNN.

Number of hidden nodes of AWNN.
Forecast electricity price at time ¢.
Orders of time series models.

Weights of AWNN.

Average value of R; (d) series.

Index of time series.

GARCH coefficients.

Coefficient function for price series.
Coefficient function for load series.
Coefficient function for noise process.
Sample autocorrelation value of lag k.
Residual at time ¢.

Generalization factor of iteration k for
AWNN.

Average generalization factor until iteration
k for AWNN.

Variance of forecast errors.

Standard deviation (STD) of MSE on
validation set until iteration k& for AWNN.

STD of generalization factor until iteration
k for AWNN.

Backshift operator, means
BP - P, = P(t—p).

Inverse probability distribution function.
Load at time ¢.

Electricity price at time ¢.

One-period log return at time ¢.

Log return of T-period at time ¢.

Study period.

1. INTRODUCTION

ITH the introduction of restructuring to the electric
power industry, the price of electricity is becoming the

focus of all activities in electricity markets. Price forecasting



1520

techniques are used for bidding purposes and hedging against
volatilities. With a good next-day market clearing price fore-
cast, a market participant would be able to delineate better
financial decisions. That is, a power producer can develop
appropriate strategies to maximize its payoff and a consumer
can minimize its utilization cost [1].

Electricity has distinct characteristics as compared to other
commodities; it cannot be stored economically and transmis-
sion congestion may prevent a free exchange of power among
control areas. Thus, electricity price series can exhibit a major
volatility and the application of forecasting methods prevailed
in other commodities can pose large errors in electricity price
forecasting. For different applications, price forecasting can be
categorized into very short-term (several minutes to few hours),
short-term (few days), midterm (few months) and long-term
(few years). In this paper, we focus on the day-ahead market
clearing price forecasting in electricity markets. A reasonable
forecasting algorithm could capture important properties of
electricity prices such as spikes, mean reversion, seasonality,
and fat tails.

There are several possible methods for the day-ahead elec-
tricity price forecasting. The first approach is based on funda-
mental models, which is to simulate the exact physical model of
power system components and apply algorithms which consider
physical characteristics of power networks. Such an approach
would express electricity prices based on marginal generation
costs with the consideration of transmission congestion, losses,
and other ancillary service requests in power markets [1], [2].
Fundamental models account for the impact of physical capacity
of power plants and transmission lines, and demand characteris-
tics and fluctuations. The most difficult issue here is that a fun-
damental model may require significant amounts of real-time
data on power systems which can result in a complex computa-
tion process.

The second approach is based on mathematical finance
models which were originally developed and widely used for
stock and interest rate markets. Skantze et al. [3] developed a
dynamic model to describe price series based on interactions
of supply bids and load demands, which are simulated as mean
reverting processes and exponential functions, respectively.
The market clearing price was calculated as the cross section of
aggregated supply and demand bid curves. A diffusion model
for electricity prices, based on stochastic models for supply
and demand curves, was proposed by Barlow [4] to exhibit
price spikes. By fitting to historical data with the maximum
likelihood estimation, Barlow concluded that the proposed
diffusion model could provide a better fit than models with
jumps. The finance models reflect the electricity price volatility
caused by supply and demand, thus are suitable for option
valuation and risk assessment purposes. The drawback is that it
is very difficult to incorporate physical characteristics of power
systems, such as transmission congestions, network losses, and
contingencies, into mathematical finance models which may
cause a discrepancy between the finance model solution and
the real-time status of power systems.

The third approach is based on game theory models, which
are particularly focused on the impact of bidders’ strategic
behavior on electricity prices. Bolle [5] used supply and de-
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mand functions as instruments to determine market equilibria.
It showed that under a certain condition, an equilibrium ex-
ists for every finite spread of autonomous demand, including
small, nonstrategically acting consumers. Lower bounds of
market prices were also computed. Ruibal ez al. [32] used three
oligopoly models, Bertrand, Cournot, and supply function
equilibrium, to obtain closed form expressions for expected
values and variances of hourly electricity prices as well as av-
erage prices, with the consideration of hourly demand volatility
and random outages of generating units. It concluded that the
introduction of competition may decrease expected prices but
variances may actually increase. Li et al. [6] used the incom-
plete information game theory to analyze competitions among
transmission-constrained GENCOs. Based on the solution of
incomplete information game, the Bayesian Nash equilibrium
which represents locational marginal prices (LMPs) was calcu-
lated using the ISO’s security-constrained economic dispatch
(i.e., a market clearing model). The problem was an iterative
bilevel process, with the upper process representing individual
GENCOs’ bidding strategies to maximize payoffs and the lower
process solving the ISO’s market clearing problem for calcu-
lating LMPs. One presumption in the game theory is that all
players are rational, which is not always the case in electricity
markets. Other drawbacks are represented by time-consuming
processes for calculating Nash equilibria.

The fourth method is based on regression models, which
include time-series, and artificial intelligence models such as
artificial neural network (ANN) and fuzzy logic. Regression
models relate electricity price fluctuations to historical prices
and other explanatory factors such as temperature, time of
day, load demand, etc. The autoregressive integrated moving
average (ARIMA) time series was applied to load forecasting
[7], [8]. Contreras et al. [9] proposed an ARIMA model for
the day-ahead electricity price forecasting, with examples from
the Spanish electricity market and the PIM electricity market.
Backshift factors were introduced into the ARIMA model for
reflecting the seasonality of prices. In addition, it reported
that the inclusion of explanatory variables, such as demand
and available daily production of hydro units, may improve
price forecasts with large spikes. Conejo et al. [10] proposed
a hybrid wavelet transform and ARIMA model to forecast
day-ahead electricity prices. Wavelet transform was used to
decompose historically ill-behaved price series into a set of
well-behaved constitutive series. Then, ARIMA was adopted
for each constitutive series and the inverse wavelet transform
was used to reconstruct a better forecast result. Gao er al.
[11] used a three-layer back propagation network to forecast
day-ahead market clearing prices (MCPs) and market clearing
quantities (MCQs). Historical MCPs and MCQs, system loads,
fuel prices, power exchanges, weather, and season indices
that influenced market prices were used for network training,
validating, and forecasting. Holiday data were pretreated as
weighted average of following normal days. Price spikes were
truncated for a better accuracy of normal prices. Mandal et al.
[31] explored an ANN model based on similar days method to
forecast day-ahead electricity prices in the PJM market. The
impact factors were historical loads and price series of the
days similar to those of the forecast day. Pindoriya et al. [33]
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proposed an adaptive wavelet-ANN by using the Mexican hat
wavelet as the activation function for hidden-layer neurons of
feed-forward ANN. The forecast results showed good accuracy
compared to ARIMA, multi-layer perceptrons, radial basis
functions, and fuzzy neural networks. Swanson et al. [29] com-
pared various adaptive and nonadaptive, linear and potentially
nonlinear models, and concluded that the hybrid models, by
grouping the multivariate adaptive linear and nonlinear models,
dominate other models and provide least confused forecasts.
The regression method is simple and computationally efficient.
It requires detailed and correct historical data and proper
model (orders of time series model, details of layer structure of
artificial intelligence model) for adaptation and forecasting.

Price spikes were addressed regularly in electricity price
forecasting. Previously proposed models preprocess, ignore, or
truncate price spikes in order to get better forecasts for hourly
electricity prices. Zhao et al. [30] developed a data mining
based approach to forecast price spikes. Feature selection
techniques were described to identify attributes relevant to the
occurrence of spikes, including system demand, system supply,
seasonality, scheduled interchanges, and dispatchable loads.
Two algorithms, i.e., support vector machine and probability
classifier, were applied as spike occurrence predictors. Guan et
al. [12] proposed that price spikes might be the result of power
suppliers’ strategic gaming behavior. A prisoner’s dilemma
matrix game was formulated, and the notion of opportunistic
tacit collusion was introduced to explain strategic bidding
behaviors in which suppliers withhold a generation capacity
from the market to drive prices up.

This paper focuses on day-ahead electricity market clearing
price forecasts with large volatilities. Return series is used in-
stead of original price series to capture statistical properties. The
ARMAX model is used to seize the linear relationship between
price return series and load series, the GARCH model is used to
present heteroscedastic characteristics of residuals, and AWNN
is used to show nonlinear and nonstationary impacts of system
loads on electricity prices. Our proposed hybrid model provides
a 24-h MCP forecast of the next day based on historical data
and forecast explanatory factors. To illustrate our model, price
forecasts in the PJM electricity market [13] are calculated and
discussed.

The rest of the paper is organized as follows. Section II
describes the proposed model and its solution methodology.
Section III presents illustrative examples to show the proposed
model applied to the PIM electricity market. Conclusions are
provided in Section I'V.

II. FORECASTING METHODOLOGIES

In competitive power markets, electricity prices appear to be
highly volatile with nonstationary means and variances. The
prices correspond to seasonality, weekdays, weekends, and
holidays. Furthermore, power system loads as an explanatory
factor would impact electricity prices. Here, we propose a
hybrid model that uses ARMAX time series to forecast linear
relationships between electricity price return series and system
load series, followed by GARCH to simulate nonconstant
variances of residuals, and applies AWNN to forecast nonlinear
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and nonstationary impacts of system loads on electricity prices
as shown in Fig. 1. In Fig. 1, the ARMAX model is first ap-
plied for forecast using historical prices and other explanatory
data. Then, forecast results from the ARMAX model are used
as input to the GARCH model. The GARCH model output
includes nonconstant residuals. The ARMAX and GARCH
results are combined and used as input to AWNN. The AWNN
output is the final price forecast.

A. Price Data Preprocess

A key feature that distinguishes the electricity price series
from other time series lies on the assumption that the electricity
price is very volatile. Return series has more attractive statis-
tical properties and thus is easier to handle than price series [14].
There are several common definitions of asset return [15]. In this
paper, we use the continuously compounded return, also called
log return. The one-period continuously compounded return se-
ries is defined as

P,
Ry =In(P,) —In(Pi_) :1n< ! > (1)
P4
The continuously compounded return enjoys several advan-
tages over the price series. First, the multiperiod return is simply
the sum of one-period continuously compounded returns in (2):

—_

T—

Ri(r)=In(P) —In(P—,) = In(P—;) —In(Pi—j_1)]

=Ri+Ri 1+ - Ry_(r_1)- 2
Second, statistical properties of the continuously compounded
return are more tractable. Fig. 2 shows the hourly electricity
prices from January 1, 2006 to May 31, 2006 of the PJM market
[13]. Fig. 3 shows the return series during the same period. Com-
paring the two figures, we learn that the mean value of return
series is close to zero and the variability of return series over
time looks more homogeneous than that of price series. Thus,
statistical characteristics of return series may be better compre-
hended than those of price series. Therefore, we study the return
series of assets in the stationary ARMAX model instead of price
series. In the following, we refer to return series as the one-pe-
riod continuously compounded return as in (1).
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Fig. 2. Price series of PIM market from January 1, 2006 to May 31, 2006.
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Fig. 3. Return series of PJM market from January 1, 2006 to May 31, 2006.

B. ARMAX Time Series Model

ARMAX is a class of stationary stochastic model. The se-
ries in Fig. 2 shows nonequilibrium at a constant mean level,
which means the original price series is nonstationary. Using
suitable differences, a homogeneous nonstationary time series is
transferred to stationary mixed autoregressive-moving average
process shown in (3):

$(B)-(1-B)" W(P)=p(B) L +0(B)-a ()
where a; is a Gaussian N (0, o2) white noise process, ¢ (B) =
l—¢1-B—---—¢, -BP,p(B) = 1—p1-B—---—yp- B,
andd(B)=1—-6,-B—---—0y-BI.

A homogeneous nonstationary time series is transferred to a
stationary time series by taking a proper degree of differencing.
From (3), In (P;) is a homogeneous nonstationary time series.
By applying a suitable difference of order d, i.e., Ry (d) =
(1 — B)*-In (P,), the new return series R (d) is transferred to
a stationary stochastic process and fitted in a standard ARMAX
(p, q,b) model as

¢(B) - Ri(d) = ¢(B)- L +60(B) - ar. )

The general ARMAX scheme is described as follows:

1) Model Identification: Use the autocorrelation function
(ACF) and partial autocorrelation function (PACF) to identify
the order of ARMAX (p, ¢, b) and the suitable difference order
d. The autocorrelation of lag k is given as

5 (%@ -F@] - [Ress (@) - 7@
pr= 1= - — 0
> [Re(@) - R(@)

The stationary property implies that zeros of ¢ ( B) lie outside
the unit circle, which means that the ACF will die out quickly
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Fig. 4. ACF of price series of PIM market from January 1, 2006 to May 31,
2006.

1 t Sample Autocorrelation === 95% confidence bounds

0.8

06| ? .

0.4 | ?

0.2 . . . . .

0 T R T
-0.2 . . .l .

. e | LI . * Lag

04 5 10 15 20 25 30

Fig. 5. ACF of return series of PJM market from January 1, 2006 to May 31,
2006.

and rather linearly. Figs. 4 and 5 show the ACF of price se-
ries and return series from January 1, 2006 to May 31, 2006 in
the PJM market, respectively. Dashed lines indicate the approx-
imate upper and lower confidence bounds. That is, if the ACF
at a certain lag is smaller than the 95% confidence bound, we
assume there is no significant autocorrelation at that lag. After
the first order difference (which is carried out in return series),
the ACF dies out quickly after lag 2 with a damping sine-cosine
wave; so the price series may follow the process with d = 1,
which is the one-period return series as defined in (1). Thus in-
puts and outputs of ARMAX model are all price return series.
Furthermore, (p, ¢, b) orders are determined by lags where ACF
and PACF die out.

There are two alternatives to the ARMAX model to forecast a
day-ahead electricity price return series. One is to build a single
ARMAX model based on the entire series, and then consider a
24-step forecast for the next day. The other is to consider dif-
ferent hourly models. That is, dividing the entire series into 24
sets corresponding to different hours of a day, building ARMAX
models based on different hourly series, and forecasting a one
step ahead for each ARMAX model. The forecast results of the
24 ARMAX models constitute the day ahead forecast. Figs. 6—8
show the ACF of return series for the first hour and two peak
hours, i.e., hours 10 and 20, of each day in the PIM market from
January 1, 2006 to May 31, 2006. Comparing Figs. 6-8 with 5,
we learn that, although hourly ACFs are not exactly the same,
the return series ACF of the same-hour dies out more quickly
than the return series of the entire day. Hence by considering
the hourly-based series, the ARMAX model can better fit a se-
ries with proper AR and MA orders. Here we consider different
hourly ARMAX models instead of a single ARMAX model for
the entire series.

2) Parameter Estimation: After identifying a tentative
model, the next step is to estimate the model parameters. The
ordinary least squares (OLS) estimation is efficiently used to
make inferences about parameters conditional on the adequacy
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Fig. 6. ACEF of return series for the daily hour 01:00 from January 1, 2006 to
May 31, 2006.
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Fig. 7. ACF of return series for the daily hour 10:00 from January 1, 2006 to
May 31, 2006.
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Fig. 8. ACEF of return series for the daily hour 20:00 from January 1, 2006 to
May 31, 2006.

of the model. Tray et al. proposed an iterative regression
process to estimate parameters for stationary and nonstationary
ARMA models [16].

3) Diagnostic Checking: Once parameters are estimated, we
check the model adequacy for representing the series which is
intended to reveal model inadequacies and consider improve-
ments. One technique that can be used for diagnostic checking is
overfitting, i.e., fitting a more elaborate model to show whether
additions are needed. The other is the diagnostic check applied
to residuals to show if there are any autocorrelations or partial
autocorrelations among residuals. If the current model is inade-
quate, we return to step one and repeat the iterative procedure.

In conclusion, the time series model building is an iterative
procedure. It starts with the model identification and the param-
eter estimation. After the parameter estimation which is used
to analyze the adequacy of the model by diagnostic checking,
iterative steps of the model building are repeated until a satis-
factory model is obtained. One issue that needs to be consid-
ered here is that the fit of a regression model to the new data is
nearly always worse than its fit to the original data. In this paper,
the task is accomplished by separating the series into two parts,
with the first portion of the data used for the model construc-
tion and the remaining portion for the evaluation of forecasting
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Fig. 9. ACF of residuals after the ARMAX is fit to the PJM market from Jan-
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capability. Copas [17] proposed the preshrunk predictor which
anticipates the overfitting and gives predictions with a uniformly
lower mean squared error.

C. GARCH—Conditional Heteroscedastic Model

It is generally agreed that both price series and return se-
ries present nonconstant deviations over time as demonstrated
in Figs. 2 and 3. Thus the OLS estimator of ARMAX model co-
efficients is no longer asymptotically unbiased and consistent,
when error terms are autocorrelated. Thus, the residual analysis
is an important step in the regression analysis. GARCH models
are widespread tools to deal with series conditional standard de-
viations [18]. A GARCH (p, q) is modeled as (6) where v; is a
Gaussian N (0, 1) white noise process and hy = Var (e¢|e;—1)
represents the conditional variance of time ¢ based on time (¢ —

1):

P q
hy =c+2061: “hi_ +Zﬂa¢ e
i=1 i=1
&2 =v} - hy. (6)

The proposed GARCH model described in (6) can forecast
beyond one day out. The input series, &, considers the residual
of ARMAX model as the actual price minus the forecast from
the ARMAX process when the actual price is known, or forecast
residual values from the GARCH model when foresting beyond
one day out and the actual price is unknown. The prediction
quality deteriorates as the number of predicted hours increases.
After combining the results of ARMAX and GARCH models,
forecast results incorporate the possibility of nonconstant error
variance. The application of GARCH model is an iterative pro-
cedure which is similar to the ARMAX model. It includes it-
eratively order determination, parameter estimation, and model
diagnostic checking [19].

Fig. 9 shows the ACF of residual series after the ARMAX
model is fit to the PIM market from January 1, 2006 to May 31,
2006. This ACF figure suggests that the residual series fails to
have a significant serial correlation. Fig. 10 shows the ACF of
squared residuals. The autocorrelations at several lags are larger
than bounds, which suggest that the residual series may have a
conditional heteroscedasticity.

D. Adaptive Wavelet Neural Network (AWNN)

Considering nonlinear and nonstationary impacts of system
loads on price does help improve predictions based on time se-
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ries techniques, especially in the case of sky-high price spikes.
AWNN represents a more modern estimation technique for a
nonlinear relationship between electricity prices and system
loads. AWNN introduces wavelets as activation functions of
hidden neurons in traditional feed-forward neural networks
with a linear output neuron. The unknown parameters of net-
work include weights and dilation/translation factors which
can be learned by gradient-type algorithms. The success of this
configuration dwells on the fact that the wavelet network has
universal and L2 approximation properties and is a consistent
function estimator [21], [22]. The AWNN structure is shown in
Fig. 11.

The output of AWNN is computed as (7) where the multi-
dimensional wavelet function f () is calculated by the tensor
product of one-dimensional wavelets or some radial functions,
and b;;, a;; are translation and dilation parameters:

bmj))

+Y Wi-zite (1)

i=1

y_ZW f<le e blj).,”.’(ij'Z?m—

CL1] amj

The morlet wavelet shown in (8) is used here as the mother
wavelet, and other wavelet functions are dilations and transla-
tions derived from this prototype mother wavelet. We compared
two most popular mother wavelets given in the literature with
numerical tests: Morlet and Mexican Hat. We found that Morlet
always gives a better forecast solution. Since dilation parame-
ters a1, ..., am; in (7) are already included for each input, the
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usage of 1.75 in (8) is an arbitrary coefficient which will not im-
pact the forecasting accuracy. Multidimensional wavelet func-
tion is calculated by the tensor product in (9) and by the radial
function in (10):

f(z) = cos (1.75z) - exp (—2%/2) 8)
f ((le M blj)/alj, ceey (ij Ty — bm]) /am]-) =
HCOS [1 75 - cXr; — bij)/ai]‘]
exp {—[(Wij @i = big)fai)” /2] ©
F(Wyj w1y = bij)/arg, ..., (Wi - @y = bij)/amj) =
cos | 1.75 zm: [(WZJ Ty — b,i]-)/ai]-]Q
i=1
cexp | =Y [(Wij - @i — bij) [aij)* /2 (10)
=1

In the training process, the network learns by adjusting
weights as well as translation and dilation parameters by using
the product of gradient and learning rate. Two parameters, i.e.,
learning rate and momentum, are adjusted to accelerate the
learning process [19]. The learning rate controls the size of each
step for minimizing the objective function. The calculation of
momentum term is to average the changes and determine the
proportion of past changes that should be used for new values.
Thereby, the term ensures that the search path on the average is
in the downhill direction.

One of the critical issues in network training is overfitting
which means that the network memorizes the training patterns
and consequently loses the ability to generalize. That is, it fits
the training set but cannot predict the fit for new data sets. Over-
fitting is especially a serious problem for price forecasting since
there are many price spikes which are blended into historical
prices.

In the training process, there is a point at which the training
error continues to decrease while the generalization error starts
to increase. The training process should stop at this point to
avoid overfitting. Accordingly, in order to detect overfitting, the
original data set is divided into three disjoint sets, i.e., training
set, validation set, and generalization set. The training set is used
to train the network model, and the validation set is used to esti-
mate the generalization error while the generalization set is for
forecasting. In this paper, two indicators are considered together
to detect the point of overfitting. One is to check whether the
MSE in each training iteration exceeds the average MSE plus
its standard deviation, as expressed in (11):

T

1
MSE:TZ(Ot_Pt)Q

t=1

MSEY > MSEy, + ok (11)

MSE implies an underlying quadratic loss function. It is the as-
sumed loss function for which the conditional mean is the best,

e., it is the minimum MSE forecast. The other is to measure
the generalization factor, given in (12). Overfitting is detected
at the training iteration k where ~* > X]; with X]; given in (13).
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This test always ensures that v* < 1.0 before overfitting occurs
to make sure that the validation error is smaller than the testing
error [22]:

MSEE
k 1
= 12
7 T MSEE (12
Xf{: min {Xf{_l,ﬁk—l—as,l.O}. (13)

ARMAX considers different models for different hours.
However, it is not the case for WANN. Two AWNN models
are used for weekday and weekend forecasts. Both AWNNSs
for PIM price forecast studies contain 16 hidden nodes and
one output. There are two AWNN input structures, one for
predicting weekday prices and the other for weekend prices.
For weekday forecasts, nine input data are used at hour ¢ on
day D, which are loads at hours (¢ — 1), ¢ and (¢ + 1) on day
D, historical prices at hour ¢ on days (D-1) and (D-2), and
forecast prices at (¢t — 3), (¢ — 2), (¢t — 1) and ¢ based on the
forecast results from ARMAX&GARCH models. For weekend
forecasts, 14 input data are used at hour ¢ on day D, which are
loads at hours (¢ — 1), ¢ and (¢ 4+ 1) on day D, historical prices
athour ¢, (¢ + 1) and (¢ + 2) on day (D-1), historical prices at
hour (¢t — 3), (¢t — 2), (¢ — 1) and ¢ on day (D-2), and forecast
prices at (¢t — 3), (¢t — 2), (¢t — 1) and ¢ based on the forecast
results from ARMAX and GARCH models. The selection of
input features is based on correlation analysis, and the number
of hidden nodes, 16, is based on the forecasting experience in
the PJM market, which are all system specific.

The utilization and analysis of large data sets often repre-
sent a complex forecasting task. The process of feature selec-
tion is regarded as a reduction in dimensionality by choosing
a subset of variables as features which are more relevant than
others. It is likely that statistically less important components
arise from noise which are not relevant to the intrinsic nature
of the data. The dimensionality can be reduced by using sta-
tistical-based and artificial intelligence algorithms as principal
component analysis, factor analysis, feature clustering, etc. [26],
[27]. ARMAX considers hourly model structures on each day.
However, the only two AWNN models are for weekdays and
weekends, respectively.

E. Assessment of Forecasting

Several measurements are used to examine the accuracy of
forecast results. The mean absolute percentage error (MAPE)
index in (14) is considered here to evaluate the performance of
forecast results. MAPE represents the absolute average predic-
tion error between predictions and actual targets:

T
1 |0 — P
MAPE = | — -3 ———" | - 100%. 14
(T 2. F, ) 00% (14)

If the actual value is small, (14) will contribute large terms
to MAPE even if the difference between actual and forecast
values is small. In addition, if the forecast value is small and
actual value is large, the absolute percentage error will be close
to 100% [28]. In order to avoid the adverse effect of very small
prices, the AMAPE defined in (15) is adopted and compared
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with those in the literature. For (14) and (15), period T could be
hourly, daily, or weekly:

1 T
AMAPE = T'Z

t=1

|0 — Py
1 T
(T - ZB)
t=1

Before using a single model or a combination of models to
predict the future, we assume implicitly that there is a true model
or a combination of models for a given series. However, the as-
sumption is rarely accurate. Even if it is true, there is no guar-
antee that it will be selected as the best fit to the data. Thus the
impact of model uncertainty on forecasts needs to be measured
[23]. In this paper, we use the variance of forecast errors to mea-
sure this uncertainty. The smaller the variance, the less uncertain
is the model or more accurate is the forecast results. The vari-
ance of error in a time span 7' is defined as

-100%.  (15)

2

|0 — Py

(+5n)

F. Monte Carlo Random Number Generator

Series a; in the ARMAX model, series v; in the GARCH
model, and noise e in AWNN are regarded as Gaussian pro-
cesses. Also, gradient algorithms used for the training of AWNN
may be sensitive to initial conditions (i.e., weights, translation,
and dilation factors). Evenly distributed random numbers would
improve the universal search and the convergence process for
the training of ARMAX, GARCH, and AWNN models. In this
subsection, we describe the application of Monte Carlo method
for generating more evenly distributed random numbers. We
adopt antithetic variates, a variance reduction technique, to ac-
celerate the convergence of results. A low-discrepancy Monte
Carlo simulation method (lattice) is adopted with the possibility
of accelerating the convergence rate. Random numbers in the
lattice method are more evenly distributed. An n-point lattice
rule of rank-r in dimension d is defined as

— AMAPE (16)

1 T

r kz
{E —wv; mod 1, ki:(),l,...,ni—lizl,...r} 17
n;
=1

where v1, ..., v, are linearly independent d-vector of integers.
If we draw N independent samples according to the Monte
Carlo simulation method, the iteration ends when the relative
standard deviation is less than a predefined value (e.g., 95% rel-
ative standard deviation is given as 1.96 - o/v/N where o is
the standard deviation and N is number of simulations). Usu-
ally N exceeds several thousands for a relatively small standard
deviation. If the low-discrepancy method is used, the conver-
gence will be accelerated from O (1 /VN ) to nearly O (1/N)
and we can use a relatively smaller number of samples to reach
the same convergence [24], [25]. The method of antithetic vari-
ates is a commonly used control variance method. It attempts
to reduce the variance by introducing the negative dependence
between pairs of replications. It is based on the observation that
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Y; = F~'(U;) and Y; = F~1(1 — U;) have a distribution F’
but are antithetic to each other. The basic idea is that the variance
after including the pair (Y;,Y; ) is smaller than just using the

same size of random numbers generated by the ordinary Monte
Carlo method [24], [25]. The emphasis on using the low-dis-
crepancy method and the control variance method, lattice and
antithetic variates, will generate more evenly distributed random
numbers and accelerate the convergence.

III. CASE STUDIES

The proposed model is applied to predict electricity prices for
the PJM market. It is trained and tested using the data set from
January 1, 2005 to December 31, 2006. Price data and other
supporting information are given in [13]. In all case studies, for
the day D’s price forecast, the training set includes actual price
and load data up to the day before day D. Also, the demand up to
one hour ahead the price forecast hour are assumed known. As
reported in the literature [34], [35], short-term load forecasting
has reached a comfortable state of performance with 1%-2%
error. Thus load forecast errors will have very limited impacts
on price forecast errors reported in the paper. The cases are listed
as follows:

» Case 1) Five single days, selected for each month from

January to May 2006 including weekdays and weekends,
are forecast and compared with those in [31].

* Case 2) Two weeks, February 1-7, 2006 representing a
low load demand week and February 22-28, 2006 repre-
senting a high load demand week, are studied and com-
pared with results reported in [31]. Furthermore, in order
to investigate the trend in the prediction quality degrada-
tion as we increase the number of predicted hours, the fore-
cast is studied based on day-ahead and represented for the
whole month of February 2006. The same hybrid model is
used for the entire month.

» Case 3) Four one-week periods, the first seven days in each
month of February, May, August, and November repre-
senting different seasons in 2006, are studied.

The cases are discussed as follows.

1) Case 1: Five single days

For a fair comparison, same five test days used in [31] are
considered, which includes January 20, February 10, March
5, April 7, and May 13 in 2006. Five individual models are
developed and forecast prices for those five days, respectively.
The forecasts are presented in Table I and compared with those
in [31]. The AMAPE given in (15) that is also used in [31] is
considered for the results in Table 1. In Table I and thereafter,
the improvement is calculated as: (the difference between
the forecast results reported in [31] and the forecast results
reported in this paper) divided by (the forecast results reported
in [31]). A lower forecast error indicates that results are more
accurate. Table I shows the daily AMAPE for selected days.
Comparing the daily AMAPE of the proposed forecasts with
those in [31], we learn that the consideration of price series
deviations and nonlinear characteristics would help improve
the forecast accuracy. Table II shows the variance of forecast
errors as a measure of the model uncertainty. The smaller the
variance, the less uncertain is the model, thus the more accurate
are the forecasts. Notable improvements in AMAPEs and error
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TABLE 1
COMPARISON OF DAILY AMAPES FOR CASE 1
Day in 2006  Proposed Method Results in [31] Improvement
Jan. 20" 3.71% 6.93% 46.46%
Feb. 10® 2.85% 7.96% 64.20%
Mar. 5" 5.48% 7.88% 30.46%
Apr. 7" 4.17% 9.02% 53.77%
May 13" 4.06% 6.91% 41.24%
TABLE II
COMPARISON OF DAILY ERROR VARIANCES FOR CASE 1
Day in 2006  Proposed Method Results in [31] Improvement
Jan. 20" 0.0010 0.0034 70.59%
Feb. 10® 0.0015 0.0050 70.00%
Mar. 5® 0.0033 0.0061 45.90%
Apr. 7" 0.0013 0.0038 65.79%
May 13" 0.0015 0.0049 69.39%
TABLE III

COMPARISON FOR APRIL 7 FOR THE EFFECT OF GARCH ($/MWH)

Hour Actual Proposed Without Hour Actual Proposed — Without

Price  method GARCH Price method GARCH
1 3433 35.76 35.79 13 64.92 61.91 61.90
2 31.85 35.38 35.92 14 62.50 57.80 58.80
3 31.09 34.49 36.36 15 59.00 51.29 53.32
4 3032 32.24 32.23 16  53.05 51.10 50.82
5 31.59 31.28 30.67 17 50.13 47.27 47.27
6 38.02 42.41 43.30 18 45.95 45.95 45.85
7 60.59 66.46 65.99 19  49.77 50.38 50.92
8 67.06 68.60 68.88 20  62.25 62.25 62.86
9 6891 68.82 70.09 21  69.08 69.88 70.57
10 68.72 67.50 67.40 22 6333 60.96 60.76
11 66.15 66.97 66.97 23 4645 46.05 46.70
127037 71.90 6620 24 4244 40.06 39.87

variances of the proposed method as compared to [31] are
shown in the last column of Tables I and II. Table III compares
the forecast results on April 7 using the proposed method and
the method excluding GARCH (that is, only ARMAX and
AWNN are used and GARCH is bypassed). Better results are
obtained at most hours with GARCH, and the best one occurs
at hour 12 with the actual price of 70.37$/MWh, which is
71.90$/MWh as compared to 66.20$/MWh without GARCH.
The forecast results with GARCH are slightly worse at hours
4,7, 14,15, 23, and the worst one occurs at hour 15, with
the actual price of 59.00 $/MWh, which is 51.29$/MWh as
compared to 53.32$/MWh without GARCH. The final daily
AMAPE of the proposed model is 4.17% as compared with the
one without GARCH 4.72%, which indicates that by including
GARCH, the final AMAPE for the whole day is improved by
about 13.19% (i.e., (4.72% — 4.17%)/4.17%).

Figs. 12 and 13 show the day-ahead price forecasts for chosen
days of April 7 and May 13, 2006. It is reported in [31] that the
prediction is particularly inaccurate for the morning and evening
peaks of April 7, 2006. Fig. 12 shows that the prediction is im-
proved by applying the proposed method for the morning and
evening peaks, and the daily AMAPE is improved from 9.02%
to 4.17%, with a 53.77% improvement. In Fig. 13, the predic-
tion is improved for the daily and evening peaks especially at
hours 9:00 and 21:00. The forecast inaccuracy is improved here
especially for very large peaks, which are essential to GENCOs’
bidding strategies.
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Fig. 14. Actual load profile for February 1-7 and February 22-28, 2006.

2) Case 2: Two weeks with low and high load demands

Two weeks, February 1-7, 2006 representing a low demand
week and February 22-28, 2006 representing a high demand
week, are studied. Load profiles for these two weeks are shown
in Fig. 14.

Tables IV and V compare the performance of the proposed
method with that of [31]. For these two weeks, both the AMAPE
and error variance are notably improved. Especially in the week
of February 22-28, 2006, the AMAPE is decreased from 8.88%
to 5.01%, which is improved by 43.58%. With the proposed
forecasting method, the maximal daily AMAPE of 8.25% is
even smaller than the weekly AMAPE of 8.88% as reported in
[31]. These forecasts are based on day-ahead and represented
for one week. That is, the actual prices of the PIM market on
February 1, 2006 are used as inputs to forecast the price on Feb-
ruary 2, 2006 and so on; however, only one hybrid model is used
for the entire week.

The weekly forecasts for February 1-7, 2006 are presented
in Fig. 15 which shows price forecasts obtained from the pro-
posed model follow the trend of actual market prices. When
price spikes appear during peak hours in the last three days
of this week, the proposed model outperforms that in [31] by
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TABLE 1V
COMPARISON OF WEEKLY AMAPES FOR CASE 2

Proposed  Results

Week (2006) Method in [31] Improvement
Feb. Max. Daily AMAPE 8.21% 11.32% 27.47%
15 7 Min. Daily AMAPE 2.98% 5.94% 49.83%
Weekly AMAPE 5.27% 7.66% 31.20%
Feb. Ma}x. Da.ily AMAPE 8.25% 12.37% 33.31%
2o _pgih Min. Daily AMAPE 2.11% 5.66% 62.72%
Weekly AMAPE 5.01% 8.88% 43.58%
TABLE V
COMPARISON OF WEEKLY ERROR VARIANCES FOR CASE 2
Week (2006) P;;gﬁf)edd Re?l;llt]s m Improvement
Feb. 17" 0.0037 0.0066 43.94%
Feb. 227-28™ 0.0025 0.0047 46.81%
100 Price — Actual Price
90 | ($/MWh) — Forecast el ""‘\\
80 |
70 | \
60 ‘
50
40
30 Hour
20

1 24 47 70 93 116 139 162

Fig. 15. Actual and forecast prices for February 1-7, 2006.

capturing actual prices more closely as highlighted in Fig. 15.
The weekly AMAPE proposed by the hybrid model is 5.27%
as compared to 7.66% reported in [31], which shows a 31.20%
improvement.

Similarly, weekly forecasts of February 22-28, 2006 are pre-
sented in Fig. 16. According to Fig. 14, load patterns for the first
five days are similar in these two weeks. Large loads occur in
later days of the week, which increase electric prices. In compar-
ison with [31], the proposed weekly AMAPE is decreased from
8.88% to 5.01%, with a 43.58% improvement. Also, the pro-
posed accuracy of forecasts is improved especially for the last
day of the week as highlighted. The quality of prediction may
deteriorate as the number of predicted hours increases since the
same set of hybrid models will be used to for the entire week
instead of developing a set of new models for each day.

Table VI gives the forecast error variance, corresponding to
the same hours on different days of the week of February 1-7,
2006, to measure the model uncertainty. The smaller the vari-
ance, the less uncertain is the model and the more accurate are
the forecasts. Variances for off-peak hours are much less than
those of peak hours. The largest variances, which are less than
0.008, occur during hours 5-7. The second largest variances of
0.005 occur during hours 19-21 which are the evening. Vari-
ances less than 0.002 occur at off-peak hours.

The prediction quality deteriorates gradually as the number
of predicted hours increases. In order to show the degradation
of the forecast based on the increasing number of predicted
hours, forecasts based on the single day-ahead model for the
whole month of February 2006 are presented in Fig. 17 and
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Fig. 16. Actual and forecast prices for February 22-28, 2006.

TABLE VI
VARIANCE OF HOURLY FORECAST ERRORS FOR FEBRUARY 1-7, 2006 IN CASE 2

Hour Variance Hour Variance Hour Variance
1 0.00042 9 0.00202 17 0.00024
2 0.00133 10 0.00242 18 0.00023
3 0.00254 11 0.00374 19 0.00566
4 0.00199 12 0.00044 20 0.00175
5 0.00436 13 0.00031 21 0.00492
6 0.00559 14 0.00029 22 0.00084
7 0.00759 15 0.00052 23 0.00062
8 0.00145 16 0.00120 24 0.00067
120  Price ($/MWh) — Actual Price  — Forecast
100 - ]
|
80 \ \ N
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Fig. 17. Actual and forecast prices for February 1-28, 2006.

TABLE VII
COMPARISON OF MAPES FOR THE MONTH OF FEBRUARY 1-28, 2006

Feb. Feb. Feb. Feb.
TestWeek 2006) — uTjn  gnijgn  jshpps  ppmggn
Weekly AMAPE __ 527% __ 6.09% __ 626% __ 6.10%

Table VII. The results show that the forecast performance de-
teriorates slowly as the number of predicted hours increases. As
shown in Table IV, with a newly developed model for the week
of February 22-28, 2006, the weekly AMAPE is 5.01%. In com-
parison, the same period results based on the monthly forecast
would increase to 6.70% as shown in Table VII. This test shows
that a single model can be applied to several weeks.

The hybrid model would be updated as required if the current
forecasting model is not accurate enough. Accordingly, we train
the new model offline using the historical data. The technology
of incremental learning would be applied for reducing the fre-
quency of developing the new model. The technology would
update the existing model in an incremental fashion to accom-
modate the new data without compromising the performance
[36].

3) Case 3: Four one-week periods for seasons in 2006
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Fig. 18. Actual and forecast prices for May 1-7, 2006.
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Fig. 19. Actual and forecast prices for August 1-7, 2006.
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Fig. 20. Actual and forecast prices for November 1-7, 2006.

TABLE VIII
FORECAST RESULTS OF WEEKLY FORECAST PERFORMANCE OF CASE 3
Test Week (2006) Feb. May Aug. Nov.
Weekly AMAPE 5.27% 4.64% 11.28% 7.70%
Max. Daily AMAPE 8.21% 8.75% 16.04% 11.94%
Min. Daily AMAPE 2.98% 1.79% 5.59% 3.63%
Error Variance 0.0047 0.0026 0.0126 0.0050

In this case, four weeks, the first seven days in each month
of February, May, August, and November representing different
seasons in year 2006, are studied. Table VIII shows the fore-
casts. The smallest weekly AMAPE occurs in the week of May,
and the largest occurs in the week of August, which is mainly
due to large spikes occurring during that week. Figs. 18-20
show price forecasts for weeks of May, August, and November.
The different price curves show seasonal variant volatilities for
the PJM electricity market. Daily prices in May and November
appear to be more periodic than those in August, and the two
weekly forecasts follow the actual prices more closely.

In the week of August 2006, spikes as large as over
350$/MWh occur on August 3, 2006. Another two spikes occur
on peak hours of August 1 and 2, 2006. Fig. 19 shows that
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Fig. 21. Actual price from January 1, 2006 to August 7, 2006.

TABLE IX
FORECAST FOR THREE LARGE SPIKES FOR THE WEEK OF AUGUST 1-7, 2006

Hour Actual price Forecast Error
($/MWh) price($/MWh)
17:00 on Aug. 1%, 2006 267.99 223.02 16.78%
17:00 on Aug. 2™, 2006 328.04 289.83 11.65%
17:00 on Aug. 3", 2006 333.91 316.61 5.18%

the proposed price forecasts follow the trend of actual market
price spikes when spikes are directly related to the load values,
although the spike quantity is not predicted very accurately.
Fig. 21 shows the actual price series from January 1, 2006
to August 7, 2006. The spikes, as large as 267.99$/MWh,
occurring on August 1, 2006 are the first large spikes in 2006.
Thus, spike forecasts for August 1, 2006 would hardly capture
actual spikes, which is mainly due to the lack of historical
spike information when the model is built. Although forecast
spike magnitudes are smaller than those of actual prices, the
proposed algorithm does predict the spike vertex to some level
of accuracy. Reference [31] did not report any results on such
large spikes in the PJM market. In fact, the literature on price
spike forecasts is very limited. Zhao et al. [30] forecasted price
spikes of the Queensland Electricity market in June 2004 with
forecast errors of 20%. Table IX gives the hourly forecasts at
peak hours on the first three days. The largest hourly spike
forecast error, which is 16.78%, occurs at 17:00 on August 1,
2006, and the smallest, as low as 5.18%, occurs at 17:00 hours
on August 3, 2006.

Compared with [30], the accuracy of the proposed price
spike forecasts is sufficiently good considering the extreme
volatility of spike signals. Furthermore, forecasts capture actual
prices very well when prices suddenly drop by about 50% on
August 4, 2006 from over 350$/MWh to as low as 157$/MWh.
Other explanatory factors that may affect electricity prices such
as weather, available ancillary services, power exchanges, and
the availability of generators and transmission lines are not
included in the proposed day-ahead price forecasting model.
Such factors are less important for price forecasting in most
situations, and their inclusion may cause overfitting or even de-
teriorate the accuracy of the forecasting method. With modern
SCADA/EMS systems, one can monitor/evaluate the power
system status and perform very short-time price forecasts with
the proposed model, which improves the forecasting of spikes.
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IV. CONCLUSIONS

Several case studies are chosen for the PJM electricity
market with various levels of price spikes to test and validate
the proposed model. The proposed hybrid time-series and
AWNN model, composed of linear and nonlinear relationships
of prices and explanatory variables, improves the performance
of forecast results. The usage of one-period continuously
compounded return series and AWNN has an advantage of
modeling nonstationary electricity prices, especially price
spikes. The use of AWNN as a consistent function estimator
and two overfitting detection indications diminishes the over-
fitting issue when including history spikes in the training data
set for price spikes forecasting. It is observed that the proposed
hybrid model outperforms the literature, and considering the
extreme volatility of the spike signal, the price spike forecast
accuracy level of the proposed model is sufficiently good as
compared with those reported in the literature.
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