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Abstract: This study presents a stochastic security-constrained unit commitment (SCUC) model for the optimisation of
coordinated midterm water and natural gas supplies. The stochastic model considers random outages of system components,
load forecast errors and water inflow uncertainty, which are modelled as scenarios in the Monte Carlo simulation. Water
resources may be used in winter to cover gas unit outages caused by an insufficient gas supply. However, those hydro units
then may not be available for peak load shaving in the following summer if the summer happens to be a dry season. Thus,
water reservoirs would have to be utilised efficiently throughout the year to provide substantial cost reductions while
maintaining the power system reliability. The proposed model also considers the impact of midterm security-constrained
scheduling of water and gas on the power system reliability. Accordingly, hourly SCUC is incorporated in the reliability
calculation. The proposed stochastic problem is formulated as a two-stage optimisation in which the first stage optimises the
water and gas usages in the first month and the second stage considers the schedule via multiple scenarios in the following 11
months. Numerical simulations indicate the effectiveness of the proposed stochastic approach for the optimal scheduling of
midterm water and gas usages.
Nomenclature

Variables

b, c index of bus/catchment

Fc(.) production cost function of a unit

h, i index of hydro/thermal unit

Iitp
s , Pitp

s commitment state and real power
generation of thermal unit i at time t at period
p in scenario s

j, k index of iteration

LSbtp, m
s load shedding quantity of contract m at bus b

at time t at period p in scenario s

m index of curve segments

p, t index of period, and hours in each period

SUitp
s , SDitp

s startup/shutdown cost of thermal unit i at time
t at period p in scenario s

Vhtp
s reservoir volume of hydro unit h at time t at

period p in scenario s

b Lagrangian multiplier

gctp
s global parameter for catchment c describing

its depletion policy at time t at period p in
scenario s

gh,m global parameter corresponding to hydro unit h
at segment m in linearised depletion curve
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dh,m indicates whether hydro unit h is operated at
segment m in linearised depletion curve

nh,m volume of segment m in linearised depletion
curve for hydro unit h

Constants

ICh,m slope of segment m in linearised depletion
curve for hydro unit h

NB, NC number of buses/catchments

NG, NH number of thermal/hydro units

NHc number of hydro units belongs to
catchment c

NPD, NPS number of periods at the first/second stage
under study

NMb number load shedding contracts at bus b

NS number of scenarios

NT number of hours at each period

ps probability of scenario s

PLtp
s system load at time t at period p in scenario s

pvb, m
s value of lost load (VOLL) corresponding to

segment m of bus b in scenario s

Vh,max, Vh,min upper/lower limit of reservoir volume of
hydro unit h
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Vh, m upper volume limit of segment m in linearised
depletion curve for hydro unit h

Note: Corresponding variables are also considered for hydro
units by changing index i to h.

1 Introduction

In restructured power systems, independent system operators
(ISOs) maintain the power system reliability when supplying
the hourly load at minimum cost [1]. In this environment, the
interdependency of natural gas and electric power systems
could affect the security and the economics of power systems.
For instance, in winter months when residential usages of gas
increases in some regions, there may be an insufficient level
of gas available for gas-fired generating units. Hydro units
could be used in such occasions in order to avoid electric load
curtailments. However, if the following spring season happens
to be dry, water reservoirs utilised in the previous winter
would not be replenished. Thus, insufficient water resources
could lead to the inability of hydro units to supply summer
peak loads. In order to minimise peak load curtailments in the
coming summer months, water usage has to be limited in the
winter by committing more expensive thermal units.

The uncertainty of water inflow introduces a relationship
between present and future reservoir operation decisions in
a cascaded hydro system as shown in Fig. 1. Here, at the
optimal point, future and current water values are equal.
Water values are calculated as incremental/decremental
costs for reducing/adding stored water at the final level in
the current period.

The midterm (i.e. several months to 1 year) optimisation of
cascaded hydro units is a difficult task because a reservoir’s
operation strategy may affect downstream reservoirs’ energy
production and water quantity. In addition, large dimensions,
temporal and stochastic characteristics of cascaded hydro
systems would require fairly accurate solutions with
reasonably low computation costs. In [2, 3], the storage
capacity of cascaded reservoirs in a system was aggregated
into a single composite reservoir that reduced the number of
state variables for long-term studies. The storage and release
policies for each reservoir were then disaggregated using
heuristic rules. The main drawback of the single composite
reservoir model lies in the difficulty to derive feasible/
optimal operation policies for individual reservoirs from the
aggregate policy. Yu et al. [4] proposed a linear marginal
cost model to optimise the long-term hydro unit scheduling,
which was derived from the composite marginal cost
function of a thermal system. The difficulty would be to
derive the composite thermal cost function, especially when

Fig. 1 Immediate and future costs against final water storage
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incorporating the power transmission network. An overview
of the state-of-the-art optimal operation of cascaded reservoir
systems was given in [5].

The gas transmission system may affect the operation of
power systems with gas-fired generation units. Pressure
losses, pipeline contingencies, lack of storage or gas supply
disruptions may lead to forced outages of multiple gas-fired
units or generation deration. Such events could dramatically
increase the power system operating costs and transmission
congestion and jeopardise its security [6]. The scheduling of
gas-fired combined cycle units could represent a complicated
optimisation problem because such units could have multiple
operating configurations based on the number and the status
of combustion and steam turbines. Lu and Shahidehpour [7]
presented an optimisation method for establishing the state
space diagram of combined cycle units and applying
dynamic programming and Lagrangian relaxation to the
security-constrained short-term scheduling of power systems
with gas-fired combined cycle units. Non-linear optimisation
models for the integrated operation of gas and power systems
were discussed in [8, 9]. The impact of gas transmission
charges on power markets was discussed in [10]. Li and
Shahidehpour [11] proposed an integrated model for
assessing the impact of interdependency of electricity and
gas networks on power system security. The gas network is
modelled by considering daily and hourly limits on
pipelines, sub-areas, plants and generating units. Liu et al.
[12] proposed an integrated model for unit commitment
(UC) with gas transmission constraints, which were
formulated as non-linear equations and solved by a Newton–
Raphson method. Successive benders decomposition (BD)
was applied to separate the gas transmission feasibility check
subproblem from UC problem. The same methodology is
applied here to incorporate gas network constraints into the
power system optimal operation problem.

The midterm water allocation could impact the reliability of
power systems. Staschus et al. [13] modelled hydro unit
production using two different methods, that is, through peak
shaving or by dispatching hydro units against the equivalent
load duration curve (ELDC). It concluded that the ELDC-
based approach would generally result in lower production
costs and higher reliability by applying hydro units to cover
thermal unit outages. Wu et al. [14] incorporated reliability
into a UC framework by developing loss-of-load-expectation
(LOLE) and expected-energy-not-served that provided useful
information on long-term operating decisions. Additional
details on reliability evaluation methods were given in [15].

In this paper, the reliability assessment of power systems is
analysed for the midterm optimal water and gas usages. Since
the midterm operation of cascaded reservoirs is coupled in
time and space, there is a trade-off between operating cost
and supply reliability. Because it is impossible to have prior
knowledge of future water inflows, power and gas loads, as
well as power system disturbances, this trade-off can only
be expressed on a stochastic basis. Uncertainties are
simulated by the Monte Carlo (MC) method and a scenario-
based technique is applied to keep the trade-off between
computation time and accuracy. The stochastic security-
constrained unit commitment (SCUC) is used in which the
scheduling horizon is decoupled into periodic stages (i.e.
several weeks to 1 month) [16]. The periodic operation
policy would determine, at the beginning of each period,
how much water should be used or stored for the future
use. The predefined operation rules are adopted to
approximate the actual depletion policy of reservoirs located
in a catchment, which would simplify the coupling
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 5, pp. 577–587
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constraints among successive periods and take advantage of
the decomposition procedure. The problem is formulated as
a two-stage stochastic programming model for the
optimisation period of 1 year, with the first stage optimising
the operation for the first month and the second stage for
the remaining 11 months for simulating the midterm
operation via scenarios. In this paper, SCUC would satisfy
the hourly electricity and gas network constraints in the
base case and all simulated scenarios. Reliability-based
solution derived from the proposed two-stage model
satisfies the hourly electricity and gas network security
constraints and provides sufficient water and gas supply for
minimising the load shedding in the entire midterm horizon.
Midterm period refers to the scheduling horizon of several
months to 1 year, short term refers to several hours to
several weeks and long term covers several years.

The rest of the paper is organised as follows. Section 2
presents the solution methodology of the stochastic model.
Section 3 presents and discusses a 6-bus system and a
modified IEEE 118-bus system, and the conclusion is
drawn in Section 4.

2 Stochastic midterm model

The proposed stochastic optimisation problem for analysing
the power system reliability and improving the operational
efficiency of water and gas usages in a midterm horizon is
formulated as a two-stage stochastic model. The objective,
formulated in (1), is to minimise the social cost including
operation cost (i.e. production cost, startup and shutdown
costs of individual units) and the possible load-shedding
cost for the entire midterm horizon.

min
∑NPD

p=1

∑NT

t=1

∑NG

i=1
[Fc(Pitp) · Iitp+SUitp+SDitp]

+
∑NH

h=1
SUhtp+

∑NB

b=1

∑NMb

m=1
pvb,m ·LSbtp,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑NS

s=1

ps ·
∑NPS+NPD

p=1+NPD

∑NT

t=1

∑NG

i=1
[Fc(P

s
itp) · I s

itp+SUs
itp+SDs

itp]

+
∑NH

h=1
SUs

htp +
∑NB

b=1

∑NMb

m=1
pvs

b,m ·LSs
btp,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

The concept of utilising scenarios adds another dimension to
the solution that is different from that of the deterministic
midterm UC planning model. The set of constraints includes:

† System power balance constraint.
† Individual generator constraints for various types of units,
including ramping up/down rate limits, minimum on/off time
limits, generation unit capacity limits etc.
† Individual cascaded hydro unit constraints, including reserve
volume limits, water balance constraint, water discharge limits
etc. We set the initial and the terminal volumes to be the same
in a 1 year horizon to avoid excessive water usage. For the
midterm hydro operation, the water usage in the current
month is coordinated with that of future months in order to
avoid excessive water use in the current month that could lead
to the lack of sufficient water supply in future months.
† Power transmission constraints including dc network
constraints and phase shifter angles limits.
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† Natural gas transmission constraints including gas contract
limits, gas usage limits, pipeline and compressor transmission
capability limits etc.
† Reliability constraints including load-shedding limits at each
bus and each time period in each scenario, and LOLE limits.
† Reservoir volume coupling constraints for two consecutive
periods, which indicates that the terminal volume at the end of
previous period should be the initial volume at the beginning
of successive period.

Detailed formulations of constraints for the system and
individual generators are found in [16], cascaded hydro
system formulation in [17], reliability formulation in [14]
and gas network formulation in [12]. The contributions of
this paper reside in the formulation of midterm hydro
reservoir operation, the optimisation and the coordination of
midterm water and natural gas usage, and the proposed
solution methodology for the complex midterm scheduling
problem by fully utilising the capabilities of state-of-the-art
mixed-integer programming, Lagrangian relaxation and BD
techniques.

2.1 Scenario techniques with MC

A set of scenarios is generated by MC for simulating power
system uncertainties, including random outages of system
components, electric and gas load forecast errors and
uncertainties associated with water inflows. The advantage
of applying MC is that the simulation accuracy of MC
depends on the number of samples rather than the
dimension of uncertainty in each scenario. Therefore MC is
suitable for power systems with large dimensions of
uncertainty.

A two-state continuous-time Markov chain model is
applied to simulate component outages in each scenario and
UC states are calculated by solving the stochastic SCUC
problem. The parameters used for MC are failure and repair
rates of each power system component. The water inflow to
a reservoir follows a discrete Markov chain, which is
independent of inflows to other reservoirs, thus the spatially
independent log-normal random variable correlated in time
with a first-order lag is used to simulate the water inflow.
The detailed formulations are provided in [16, 17]. The
future power load and gas load uncertainty is represented
by a truncated normal distribution with a probability density
function shown in (2). The distribution is divided into a
discrete number of intervals (i.e. m, m+ s, m+ 2s,
m+ 3s etc) and the load in the mid-point of each interval
represents the probability of the interval, where m is the
forecasted load and s is the known standard deviation.

The Latin hypercube sampling is developed to generate
multi-dimensional random numbers to compose a set of
scenarios. The scenario reduction can reduce the
computational time by eliminating scenarios with very low
probabilities and bundling scenarios that are very close in
terms of statistical metrics [16–18].

f (x)=
0 x ,m−3.5s or x .m+3.5s

1

a
����
2p

√
s
·e−((x−m)2/2s2) m−3.5s≤ x≤m+3.5s

⎧⎨
⎩

wherea=
∫m+3.5s

m−3.5s

1����
2p

√
s
·e−((x−m)2/2s2)dx (2)
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2.2 Midterm reservoir operation rules

Simplified operation rules that approximate the depletion
policy of cascaded reservoirs may be used to estimate the
energy production [19]. The adopted operation rules define
the volume of each reservoir Vh in a catchment as a
function of gc corresponding to catchment c. That is, a set
of curves is adopted for describing the relationship between
the global parameter (one global parameter per catchment)
and each reservoir volume in the catchment as

Vh = C(gc) ∀h [ c (3)

The operation rule is given based on historical inflow records
or non-linear optimisation model [20]. As shown in Fig. 2, the
operation rule does not have to represent a convex curve.

The following two formulations can be applied for mixed-
integer linear programming (MIP) modelling of non-convex
operation rule curves. Numbers of integer variables and
constraints are often regarded as good indicators of
computational difficulty of MIP models [21]. Considering a
NVh segments curve shown in Fig. 2, Formulation 1 is
based on the type 1 special ordered set (SOS1), which
forms variables within which only one is non-zero and
would facilitate the branching process of branch-and-bound
method for a faster convergence [21, 22]. Different from
Formulation 1 which introduces integer variables
corresponding to each of NVh segments, Formulation 2
includes integer variables corresponding to each of
NVh 2 1 intermediate points, thus containing less integer
variables than Formulation 1. The number of variables and
constraints are listed in Table 1 for comparison. Although
Formulation 1 introduces one more integer variable than
Formulation 2, there would be NVh nodes in either case by
the branch-and-bound tree in the worst case. An MIP model
is often easier to solve by expanding a limited number of
constraints, which provides a tighter approximated MIP
formulation and will be used in the tree search strategy.
Based on our experience with different formulations for
large systems, Formulation 2 is tighter and converges faster
and used in this paper.

Formulation 1

Vh = Vh, min · dh,1 +
∑NVh

m=2

Vh,m−1 · dh,m +
∑NVh

m=1

ICh,m · vh,m

Fig. 2 Depletion curves for a catchment
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gc = 0 · dh,1 +
∑NVh

m=2

gh,m−1 · dh,m +
∑NVh

m=1

vh,m

∑NVh

m=1

dh,m = 1 dh,m [ {0, 1}

0 ≤ vh,1 ≤ (gh,1 − 0) · dh,1

0 ≤ vh,m ≤ (gh,m − gh,m−1) · dh,mm [ {2, . . . , NVh − 1}

0 ≤ vh,NVh
≤ (1 − gh,NVh−1) · dh,NVh

(4)

Formulation 2

Vh = Vh, min +
∑NVh

m=1

ICh,m · vh,m

gc = 0 +
∑NVh

m=1

vh,m

(gh,1 − 0) · dh,1 ≤ vh,1 ≤ (gh,1 − 0)

(gh,m − gh,m−1) · dh,m ≤ vh,m ≤ (gh,m − gh,m−1) · dh,m−1

m [ [2, NVh − 1]

0 ≤ vh,NVh
≤ (1 − gh,NVh−1) · dh,NVh−1

dh,m [ {0, 1}

(5)

2.3 Proposed stochastic solution

Scenarios add another dimension to the proposed solution of
midterm model, which makes the proposed two-stage
stochastic problem very large and computationally
impractical. A proper decomposition procedure is necessary
for decomposing the problem into tractable easy-to-solve
subproblems for each period.

In order to consider midterm optimal water usage, reservoir
volume coupling constraints between consecutive periods
would need to be considered, which states that the terminal
volume of one period would be the same as the initial
volume of the next period. Thus, the midterm horizon is
divided into several periods, with the relaxation of reservoir
volume coupling limits for linking successive periods.
Other coupling constraints, such as ramping up/down rate
limits, minimum on/off time constraints and delayed water
discharge from upper reservoirs to lowers, which link
successive periods, are managed based on one of the
following two strategies:

1. Constraints linking successive periods will be ignored.
Accordingly, the short-term UC problem can be solved for
each period independently. The application of parallel

Table 1 Comparison of MIP formulations

Formulation 1 Formulation 2

number of integer variables NVh NVh 2 1

number of total variables 2 . NVh + 2 2 . NVh + 1

number of equality constraints 3 2

number of inequality constraints

(limits of variables do not count in)

NVh 2 . NVh 2 2
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 5, pp. 577–587
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processing will speed up the solution. However, the accuracy
may suffer slightly.
2. Short-term UC subproblems are solved sequentially. That
is, the results of the short-term UC for the first period provide
initial conditions for the second period. In this case,
constraints linking successive periods will be satisfied
within each period by UC.

The difference between the two alternatives signifies the
trade-off between speed and accuracy. In this paper, we
adopt the second alternative. The reservoir volume which
links successive periods is relaxed by introducing artificially
duplicated variables of common variables in (6). In (6), the
first and third constraints correspond to the reservoir
volume coupling constraint between successive periods at
the first and second stages, respectively, and the second
constraint is for the coupling constraint between the last
period of the first stage and the first period of the second
stage. Based on the midterm reservoir operation rule
discussed earlier, (6) is substituted by (7) by using gc for
each catchment c.

The introduction of global parameter gc, which uniformly
adjusts reservoir volumes in a catchment, reduces the
number of coupling constraints that are to be relaxed
from NH . [(NPD 2 1) + NS + NS . (NPS 2 1)] in (6) to
NC . [(NPD 2 1) + NS + NS . (NPS 2 1)] in (7). By
introducing a set of Lagrangian multipliers, coupling
constraints (7) are relaxed and the Lagrangian dual function
of the original problem (1) is formulated as (8). Equation
(8) can be easily separated into tractable subproblems,
(9)–(11), corresponding to periods at the first stage and
(12)–(14) corresponding to periods of each scenario at the
second stage. A decomposition approach is used for solving
each subproblem with respect to constraints discussed at the
beginning of Section 2.

VhNTp = Vh0(p+1) ∀h, ∀p [ {1, . . . , NPD − 1}

VhNTp = V s
h0(p+1) ∀s, ∀h, p = NPD

V s
hNTp = V s

h0(p+1) ∀s, ∀h, ∀p [
NPD + 1, . . . ,

NPD + NPS − 1

{ } (6)

gcNTp = gc0(p+1) ∀c, ∀p [ {1, . . . , NPD − 1}

gcNTp = gs
c0(p+1) ∀s, ∀c, p = NPD

gs
cNTp = gs

c0(p+1) ∀s, ∀c, ∀p [
NPD + 1, . . . ,

NPD + NPS − 1

{ } (7)

L(b) = min
∑NPD

p=1

∑NT

t=1

∑NG

i=1

[Fc(Pitp) · Iitp + SUitp + SDitp]

{

+
∑NH

h=1

SUhtp +
∑NB

b=1

∑NMb

m=1

pvb,m · LSbtp,m

}

+
∑NS

s=1

ps ·
∑NPS+NPD

p=1+NPD

∑NT

t=1

∑NG

i=1

[Fc(P
s
itp) · I s

itp

{

+ SUs
itp + SDs

itp] +
∑NH

h=1

SUs
htp

+
∑NB

b=1

∑NMb

m=1

pvs
b,m · LSs

btp,m

}
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+
∑NC

c=1

∑NPD−1

p=1
bcp · (gcNTp − gc0(p+1))

+
∑NS

s=1
bs

c · (gcNTNPD − gs
c0(NPD+1))

+
∑NS

s=1

∑NPS+NPD−1

p=1+NPD
bs

cp · (gs
cNTp − gs

c0(p+1))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

min
∑NT

t=1

∑NG

i=1
[Fc(Pit1) · Iit1 + SUit1 + SDit1]

+
∑NH

h=1
SUht1 +

∑NB

b=1

∑NMb

m=1
pvb,m · LSbt1,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑NC

c=1

bc1 · gcNT1 (9)

min
∑NT

t=1

∑NG

i=1
[Fc(Pitp) · Iitp + SUitp + SDitp]

+
∑NH

h=1
SUhtp +

∑NB

b=1

∑NMb

m=1
pvb,m · LSbtp,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑NC

c=1

{bcp · gcNTp − bc(p−1) · gc0p}

∀p [ {2, . . . , NPD − 1}

(10)

The approach applies BD for separating UC in the master
problem from the dc network and the gas network security
check in subproblems. Successive linear programming is
applied to solve the gas transmission feasibility check. If
any electric power network or gas network violations arise,
corresponding Benders cuts are formed and added to the
master problem for solving the next iteration [12].

min
∑NT

t=1

∑NG

i=1
[Fc(Pitp) · Iitp + SUitp + SDitp]

+
∑NH

h=1
SUhtp +

∑NB

b=1

∑NMb

m=1
pvb,m · LSbtp,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑NC

c=1

∑NS

s=1

bs
c · gcNTp − bc(p−1) · gc0p

{ }
p = NPD (11)

min ps ·
∑NT

t=1

∑NG

i=1
[Fc(Ps

itp) · I s
itp + SUs

itp + SDs
itp]

+
∑NH

h=1
SUs

htp +
∑NB

b=1

∑NMb

m=1
pvs

b,m · LSs
btp,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑NC

c=1

{bs
cp · gs

cNTp − bs
c · gs

c0p} p = NPD + 1 (12)

min ps ·
∑NT

t=1

∑NG

i=1
[Fc(P

s
it1) · I s

it1 + SUs
it1 + SDs

it1]

+
∑NH

h=1
SUs

ht1 +
∑NB

b=1

∑NMb

m=1
pvs

b,m · LSs
bt1,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
∑NC

c=1

{bs
cp · gs

cNTp − bs
c(p−1) · gs

c0p}

∀p [ {NPD + 2, . . . , NPD + NPS − 1}

(13)
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min ps ·
∑NT

t=1

∑NG

i=1
[Fc(Ps

itp) · I s
itp + SUs

itp + SDs
itp]

+
∑NH

h=1
SUs

htp +
∑NB

b=1

∑NMb

m=1
pvs

b,m · LSs
btp,m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−
∑NC

c=1

bs
c(p−1) · gs

c0p p = NPD + NPS (14)

Since Lagrangian dual function is non-differentiable, the
standard subgradient method would result in a slow
convergence. A proximal Bundle method is used, which
diminishes the unstable behaviour of cutting-plane
algorithm and speeds up the convergence process by adding
the trust region philosophy [23, 24].

First b = {bcp, b
s
c, b

s
cp} is selected among the current set of

available solutions, which is typically the one that provides the
largest L(b). The quadratic problem (15) is solved to find
bk = {bk

cp, bk,s
c , bk,s

cp } for the next iteration, where Dj is the
linearisation error. Here, ‖.‖ is the Euclidean norm and ak is
an iteration-variant positive parameter, called the trust-region
parameter, which decides the region that can be trusted as an
approximation for L(b).

Several issues are discussed here for an efficient bundle
algorithm, including the dynamic choice of parameter ak,
updating strategy for the current point b and stopping
criterion. At each iteration, k, the current point b will be
shifted to bk only if (16) is satisfied and ak for the next
iteration will be increased to enlarge the trust region if (17)
is not satisfied.

Otherwise, the current solution of iteration k is added to
the bundle if Dk is small compared to a predefined
threshold. If the condition is not satisfied, we discard the
solution of this iteration and reduce ak to shrink the trust
region for solving (15) again. The ak updating strategy is
as follows:

† Predefine lower and upper bounds of a, aMin and
aMax as a0 = (a0

Min + a0
Max)/2, a0

Min = aMin, a0
Max =

aMax.
† For each iteration k, set ak

Min = ak−1 if ak is to be increased;
otherwise set ak

Max = ak−1 and the new ak will be calculated
as ak = (ak

Min + ak
Max)/2.

max
bk

cp,bk,s
c ,bk,s

cp

EVk − 1

2 · ak
‖bk − b‖2

{ }

s.t.

EV k ≤ Dj

+
∑NC

c=1

∑NPD−1

p=1
(bcp − bcp) · (gj

cNTp − g
j

c0(p+1))

+
∑NS

s=1
(bs

c − b
s
c) · (gj

cNTNPD − g
j,s

c0(NPD+1))

+
∑NS

s=1

∑NPS+NPD−1

p=1+NPD
(bs

cp − b
s
cp) · (g j,s

cNTp − g
j,s

c0(p+1))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)
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Dj = L(bj) − L(b)

+
∑NC

c=1

∑NPD−1

p=1
(bcp − bj

cp) · (gj
cNTp − g

j
c0(p+1))

+
∑NS

s=1
(b

s
c − b j,s

c ) · (gj
cNTNPD − g

j,s
c0(NPD+1))

+
∑NS

s=1

∑NPS+NPD−1

p=1+NPD
(b

s
cp − b j,s

cp ) · (g j,s
cNTp − g

j,s
c0(p+1))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

[L(bk)−L(b)]/L(b) ≥ 11 (16)

∑NC

c=1

∑NPD−1

p=1
(bk

cp −bcp) · (gk
cNTp −gk

c0(p+1))

+
∑NS

s=1
(bk,s

c −b
s
c) · (gk

cNTNPD −gk,s
c0(1+NPD))

+
∑NS

s=1

∑NPS+NPD−1

p=1+NPD
(bk,s

cp −b
s
cp) · (gk,s

cNTp −gk,s
c0(p+1))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
≤ 12

(17)

The process stops when the Lagrangian multiplier difference
between two successive iterations is smaller than the
predefined threshold 13 in (18). The solution that satisfies
the stopping criterion may not satisfy the relaxed constraints
(6)–(7). Equation (19) calculates the degree of violation of
relaxed constraints (6)–(7). A feasible solution is
constructed by heuristically adjusting the initial and
terminal reservoir volumes at each period based on the
system load at successive periods (20)–(22), which are
calculated and used as limits for the problem optimisation
at the final run. Because DV is small when the stopping
criterion is met, and reservoirs have spillage capability, the
final run will not encounter infeasibility by minor
adjustments of reservoir volumes (20)–(22).

‖bk −b‖2 =
∑NC

c=1

∑NPD−1

p=1

(bk
cp −bcp)2 +

∑NS

s=1

(bk,s
c −b

s
c)2

{

+
∑NS

s=1

∑NPS+NPD−1

p=1+NPD

(bk,s
cp −b

s
cp)2

}
≤ 13

(18)

DV =

������������������������������������������������
∑NH

h=1

∑NPD−1

p=1
(VhNTp −Vh0(p+1))

2

+
∑NS

s=1
(VhNTNPD −V s

h0(1+NPD))
2

+
∑NS

s=1

∑NPS+NPD−1

p=1+NPD
(V s

hNTp −V s
h0(p+1))

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

√√√√√√√√√√√√√
(19)

V F
hNTp = V F

h0(p+1) = V k
hNTp + (V k

h0(p+1) −V k
hNTp)

·
∑

t PLtp∑
t PLtp +

∑
t PLt(p+1)

∀p [ {1, . . . , NPD− 1}

(20)
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 5, pp. 577–587
doi: 10.1049/iet-gtd.2010.0215



www.ietdl.org
V F
hNTp = V F

h0(p+1) = V k
hNTp +

∑
s

ps ·V k,s
h0(p+1) −V k

hNTp

( )

·
∑

t PLtp∑
t PLtp +

∑
s ps ·

∑
t PLs

t(p+1)

( ) p = NPD

(21)

V F ,s
hNTp = V F ,s

h0(p+1) = V k,s
hNTp + (V k,s

h0(p+1) −V k,s
hNTp)

·
∑

t PLs
tp∑

t PLs
tp +

∑
t PLs

t(p+1)

∀p [
NPD+ 1, . . . ,

NPD+NPS− 1

{ }
(22)

Fig. 3 shows the solution strategy for decomposing the large-
scale problem into tractable easy-to-solve subproblems. With
the relaxation of reservoir volume coupling constraints by
introducing Lagrangian multipliers, the midterm problem is
divided into several short-term sub-problems, corresponding
to the period in the first stage and periods in the second stage
for each scenario. For each short-term SCUC sub-problem,
BD is applied for separating UC in the master problem from
the hourly dc network and gas network evaluation in sub-
problems. If any electric power network or gas network
violations arise, corresponding Benders cuts are formed and
added to the master problem for solving the next iteration
[12]. After obtaining the hydro schedules from the short-
term operation sub-problems, the coupling constraints of
reservoir volume are checked. If the constraints are violated,
the corresponding Lagrangian multipliers are updated. The
Lagrangian iterations will continue until a near optimal

solution is reached, and the final feasible solution is
constructed by heuristically adjusting the initial and terminal
reservoir volumes at each period.

3 Case study

A 6-bus system and the IEEE 118-bus system are considered
to demonstrate the proposed approach for the optimal
scheduling of midterm water and gas usages.

3.1 6-bus system

The 6-bus system in Fig. 4 is used to illustrate the proposed
method. The system has three gas-fired units, one hydro
unit and seven transmission lines. The hydro unit data are
shown in Table 2. Other detailed generator, transmission
line and gas network data are given in [12]. Failure and
repair rates for transmission lines are 0.0671 failures/year
and 0.9329 repairs/year.

Fig. 3 Optimisation and coordination for the midterm operation planning with optimal usage for water and natural gas

Fig. 4 One-line diagram of six-bus example

Table 2 Parameters of hydro unit

efficiency h0 a discharge max, ×104 m3 discharge min, ×104 m3

8.091 0.857 0.0001315 10 1

Pmin, MW Pmax, MW Ramp, MW/h min on, h min off, h

9 80 60 1 1

volume min, ×104 m3 volume max, ×104 m3 initial volume ×104 m3 terminal volume, ×104 m3 initial hour

60 1000 1000 1000 1

Operation rule

global parameter 0 0.25 0.75 1

volume, ×104 m3 60 250 800 1000
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 5, pp. 577–587 583
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Failure and repair rates for generating units are listed in
Table 3. The system is tested for a one-year case (from
November to the following October) with the annual peak
power load of 330 MW and annual peak gas load of
6000 kcf. Fig. 5 shows the weekly peak loads as a
percentage of annual peak load. The maximum allowable
load shedding is set to be the load value at the designated
bus, with a VOLL of 5000 $/MWh for the first 10% of the
load and 2000 $/MWh for the remaining. For the 6-bus
system, each period refers to a month. Thus, the first stage
contains one period and the second stage contains 11
periods in each scenario.

Two cases are studied to illustrate the effect of midterm
water and gas optimal usages on power system reliability:

Case 1: A deterministic solution in the winter season is
presented and its impact on the system reliability is
discussed, where forced outage rates are assumed to be
negligible and the power and gas loads given in Fig. 5 are
used. The uncertainty of water inflow is not considered, and
thus the terminal reservoir volume is not restricted. The
optimisation of deterministic model utilises as much water
as possible to supplement the gas usage in the winter
season (November–January with highest gas loads). The
impact of the deterministic solution on the system reliability
is considered by optimising a scenario-based stochastic
model for the remaining months of February–October by
utilising terminal volumes at the end of January as the
initial condition.

The computation time for the scenario-based problem
depends on the number of scenarios. The scenario reduction
method would reduce the total number of scenarios from
100 to 12 as a trade-off between calculation speed and
solution accuracy. Table 4 shows the weights of each
scenario after reduction. The results of the first 3 months in
Case 1 are presented in Table 5.

Table 3 Failure and repair rates of generators

Units NG1 NG2 NG3 H1

failure rate, failures/year 0.0307 0.0286 0.0259 0.0262

repair rate, repairs/year 2.4444 2.2749 2.0622 2.0893

Fig. 5 Weekly peak loads as a percentage of annually peak load

Table 4 Weights of each scenario after scenario reduction

Scenario 1 2 3 4 5 6

weight 0.07 0.075 0.18 0.035 0.065 0.24

Scenario 7 8 9 10 11 12

weight 0.07 0.045 0.045 0.01 0.04 0.125
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Owing to the limited capability of gas network, the gas
required by gas-fired generating units cannot be transported
to corresponding nodes by the gas transmission system. The
water resource is the alternative energy to cover the load. It
is shown that most of the water reservoir is used in
December because of the highest demand by gas loads
shown in Fig. 5. The terminal reservoir volume at the end
of winter reaches its minimum value of 60 × 104 m3

because the terminal reservoir volume is not restricted and
the water resource in the reservoir is used as much as
possible. We use the terminal volume at the end of winter,
as the initial condition for the following seasons,
and 1000 × 104 m3 as the terminal volume for the
remaining 9 months. The resulting social cost and load
shedding for each scenario is listed in Table 6. Based on
results presented in Tables 6 and 7, the social cost is
$39 585 164.34 (i.e. 12 141 356.75 + 27 443 807.59) with a
load shedding of 460.91 MWh. The annual load shedding
is 96.465 h.

Case 2: The proposed two-stage stochastic optimisation
model is discussed. The first stage covers the first month
and the second stage includes the remaining 11 months via
scenarios. The uncertainties of system component
availability, power and gas load levels and water inflows
are considered. Table 7 shows that by the midterm
stochastic optimisation of water and gas usages, one can
optimally allocate the water resource to enhance the system
reliability. In comparison with Case 1, load shedding is
reduced from 460.91 to 440.90 MWh. The annual load
shedding is reduced from 96.465 to 71.07 h. The reservoir
water, previously utilised fully in Case 1, is now partly
allocated to the summer for peak-shaving. The social cost
in comparison with Case 1 is reduced by 5.08% (i.e.
39 585 164.34 – 37 572 145.9/39 585 164.34.)

For this Case, the period for the first stage and periods
corresponding to each scenario in the second stage are
solved sequentially. The CPU time consumed for one

Table 5 Results for the first 3 months in Case 1

social cost, $ 12 141 356.75

LS, MWh 411.42

number of hours LS occurs 56

volume at the end of each month, ×104 m3 11 860.34

12 65.83

1 60.00

Table 6 Results for the following seasons based on Case 1

Scenario Social cost, $ LS, MWh Number of LS hours

1 27 659 311.07 53.62 57

2 27 425 028.63 37.29 35

3 27 678 604.15 53.10 39

4 27 551 233.52 54.52 43

5 27 296 860.88 38.91 47

6 27 672 777.70 43.15 29

7 27 608 847.21 57.60 48

8 28 646 885.12 45.15 40

9 26 587 588.48 43.03 33

10 28 715 483.62 76.87 54

11 27 667 616.62 57.55 50

12 26 212 352.22 60.16 49

expected 27 443 807.59 49.49 40.465
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 5, pp. 577–587
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scenario is about 15 min and about 60 h (i.e. no. of
scenarios × no. of iterations × 15 min) for the entire two-
stage stochastic programming on a 3.2 GHz Pentium 4
personal computer. However, parallel computing applied to
scenarios would rapidly reduce the CPU time to 5 h.

Fig. 6 shows the optimal monthly water resource allocations
for Case 1 and two scenarios of Case 2, representing a wet and a
dry weather. In Case 1, the reservoir water is used fully when the
future water inflow situation is not considered. Two scenarios, a
dry and a wet year, presented in Fig. 6 show that when the
uncertainty of water inflow is considered, the water used in
winter would have to be limited in order to cover the summer
peaks. Fig. 6 shows that reservoir volumes for wet and dry
scenarios are decreased in June since the water is discharged
for peak load shaving. That is, the terminal volumes at the end
of January are higher than that of Case 1 to cover a possible
dry summer season. Fig. 6 shows that for the dry scenario, the
water usage in November through January is strictly limited
with the limited reservoir refilling. This is because of the less
available water resource in January through April. The results
reveal the necessity of incorporating a two-stage stochastic
optimisation model for the midterm water and gas
management to enhance the system reliability.

In order to demonstrate the convergence process, Fig. 7
presents the iterative Lagrangian function. After 20
iterations, we found a solution of $12 081 574.76 which
satisfies the stopping criterion (18). By applying the

Fig. 6 Terminal volumes at the end of each month

Table 7 Results for Case 2

First-stage solution

social cost 3 473 861.69

LS, MWh 0

number of LS hours 0

terminal volume, ×104 m3 984.29

Second-stage solution

Scenario Social cost, $ LS, MWh Number of

LS hours

1 34 234 442.97 426.7466 82

2 33 745 037.61 447.1278 58

3 34 337 516.25 436.0846 63

4 33 707 806.17 426.1430 66

5 33 513 715.31 422.8795 72

6 33 985 407.29 446.8944 64

7 34 046 856.81 452.2434 69

8 35 486 860.11 432.0145 79

9 33 888 175.90 423.6509 71

10 36 731 962.03 444.9300 94

11 33 916 433.81 452.5987 88

12 33 971 571.38 452.9742 90

expected 34 098 284.21 440.9000 71.07
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 5, pp. 577–587
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heuristic adjustments (20)–(22), the final social cost is
$12 141 356.75. Fig. 7 shows the better performance of
bundle method in comparison with that of the subgradient
method. Fig. 8 shows the degree of constraints violation as
calculated in (19). The violation in bundle method is
reduced much faster than that in the subgradient method,
implying that the feasibility is further improved. A better
schedule is obtained, which needs less modification in the
heuristics process for deriving a final feasible solution.

3.2 IEEE 118-bus system

A modified IEEE 118-bus system is studied with 54 fossil
units, 12 gas-fired units, 7 hydro units, 186 branches and
91 demand sides. The peak load is 8600 MW. Hydro units

Fig. 7 Iterative values of L(b) in Case 1

Fig. 8 Iterative values of reservoir coupling violation in Case 1

Table 8 Weight of each scenario after scenario reduction

Scenario 1 2 3 4 5 6

weight 0.05 0.075 0.125 0.07 0.09 0.185

Scenario 7 8 9 10 11 12

weight 0.065 0.07 0.06 0.05 0.05 0.11

Table 9 Results for the first 3 months of Case 1

Social cost, $ 167 505 857.79

load shedding, MWh 5815.99

volume at the end of

each month, ×104 m3

hydro unit 1 11 789.521400

12 100.576885

1 70

hydro unit 5 11 814.661521

12 110.595936

1 60
585
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Table 10 Results in the following seasons based on results of Case 1

Scenario Social cost, $ LS, MWh Scenario Social cost, $ LS, MWh

1 469 781 501.38 9623.66 7 551 316 220.46 8995.90

2 546 776 969.21 12 474.30 8 444 484 699.84 9254.63

3 475 292 113.82 9213.25 9 449 050 768.81 10 892.67

4 482 963 151.36 10 474.21 10 472 859 825.43 10 474.37

5 480 598 672.06 9264.79 11 579 381 075.70 8973.25

6 555 092 475.68 11 376.21 12 438 829 845.99 10 203.03

expected cost 498 438 128.63 expected LS 10 220.87

Table 11 Results of Case 2

First-stage solution (November)

Social cost $54 915 796.54

LS, MWh 1641.65

Terminal volume (×104m3) Hydro unit 1 Hydro unit 5

443.985 524.97

Second-stage solution (December–October)

Scen Social cost, $ LS, MWh Scen Social cost, $ LS, MWh

1 569 348 058.64 12 709.49 7 638 250 719.88 12 140.42

2 631 623 855.91 15 675.10 8 553 314 423.24 12 541.41

3 575 609 207.51 12 374.16 9 548 171 522.09 14 049.00

4 573 665 664.86 13 381.57 10 579 617 496.76 13 207.50

5 571 984 423.07 12 647.78 11 659 318 818.53 12 121.87

6 639 399 045.85 14 535.15 12 539 828 573.25 13 165.35

expected cost 592 150 917.73 expected LS 13 346.51
1–4 belong to one catchment and units 5–7 belong to the
second catchment. Detailed generator, transmission line and
gas network data are found in [12, 16]. For the 118-bus
system, since it is impossible to run a monthly SCUC at one
shot, each period refers to a time span of one week. Thus, the
first stage contains four periods and the second stage
contains remaining 48 periods in each scenario. The
probability of each scenario is shown in Table 8. The same
two cases in the 6-bus system are considered again. Tables 9
and 10 present the solution of Case 1 with a social cost of
$167 505 857.79 for the winter season. Without considering
the water inflow uncertainty, terminal reservoir volumes are
limited to their corresponding minimum values. Adopting
these terminal volumes as initial conditions for the
following seasons, the future social cost is $498 438 128.63
with the load shedding of 10 220.87 MWh. Table 11
shows the optimal two-stage stochastic solution with
uncertainties. The load shedding is reduced from 16 036.86
to 14 988.16 (i.e. 1641.65 + 13 346.51) MWh. The optimal
allocation of water reservoirs for the midterm horizon
reduces the social cost by 2.83% [i.e. ((498 438 128.63 +
167 505 857.79) 2 (54 915 796.54 + 592 150 917.73)) /
(498 438 128.63 + 167 505 857.79)] which shows that by
considering uncertainties in the optimisation of water and gas
usages in a midterm horizon, one can optimally allocate
water resource to enhance the system reliability.

4 Conclusions

This paper proposed a two-stage stochastic programming
model for the optimisation of midterm water and gas usage
with uncertainties. The probabilistic reliability criteria,
which are measured by the expected load shedding quantity
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and number of hours that load shedding happens, are
incorporated into the midterm stochastic UC problem, in
which both the power and the gas network security
constraints are checked. The optimal midterm water usage
allocation is achieved by introducing reservoir operation
rules with a global operation parameter for the whole
catchment. The optimal operating point is based on the
minimum social cost which includes operating and load
shedding costs. The contributions of this work resides in
the formulation of midterm hydro reservoir operation, the
optimisation and coordination for the midterm water and
natural gas usages, and the proposed solution methodology
for the complex midterm scheduling problem by fully
utilising the capabilities of state-of-the-art mixed-integer
programming, Lagrangian relaxation, and BD techniques.
The optimal point is influenced by the unavailability of
power system components, power and gas load levels, and
water inflows, which are accurately simulated via multiple
scenarios by the MC method. The results reveal that water
management policies have a major impact on the system
reliability. The system reliability is significantly improved
by efficiently adjusting the water usage in a midterm
horizon. In this regard, the water usage is optimally
distributed throughout the midterm horizon. The study
shows that the proposed two-stage stochastic optimisation
model can improve the power system reliability and
decrease the social cost by optimally allocating water and
gas usages in a midterm horizon.
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