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Comparison of Scenario-Based and Interval
Optimization Approaches to Stochastic SCUC
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Abstract—This paper compares applications of scenario-based
and interval optimization approaches to stochastic security-con-
strained unit commitment (Stochastic SCUC). The uncertainty of
wind power generation is considered in this study to compare the
two approaches, while other types of uncertainty can be addressed
similarly. For the simulation of uncertainty, the scenario-based ap-
proach considers the Monte Carlo (MC) method, while lower and
upper bounds are adopted in the interval optimization. The Sto-
chastic SCUC problem is formulated as a mixed-integer linear pro-
gramming (MIP) problem and solved using the two approaches.
The scenario-based solutions are insensitive to the number of sce-
narios, but present additional computation burdens. The interval
optimization solution requires less computation and automatically
generates lower and upper bounds for the operation cost and gen-
eration dispatch, but its optimal solution is very sensitive to the un-
certainty interval. The numerical results on a six-bus system and
the modified IEEE 118-bus system show the attributes of the two
approaches for solving the Stochastic SCUC problem. Several con-
vergence acceleration options are also discussed for overcoming the
computation obstacles in the scenario-based approach.

Index Terms—Interval optimization, scenario-based approach,
stochastic SCUC.

NOMENCLATURE

Variables:

7 Index of thermal units.

I; Commitment of unit 7 at time ¢.

k Index of curve segments.

Py Dispatch of unit ¢ at time ¢ at
segment k.

AP35, Corrective dispatch capability of
unit ¢ at time ¢ at segment k in
scenario s.

F; Power dispatch of unit ¢ at time £.

Pyt Power dispatch of wind unit w at

time ¢.
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Index of scenarios.

Slack variable.

Startup/shutdown cost of unit ¢ at
time ¢.

Index of hours.

Index of wind generation units.

Production cost of scenario s at
time ¢.

Dual variables.
Solution to variable.
Variable related to scenario s.

Interval variable.

Incremental cost for segment k of
unit 2.

No load cost of unit 3.

Probability of scenario s.

System load at time ¢.

Interval numbers for the
pessimistic wind scenario.

Interval numbers for the optimistic
wind scenario.

Minimum capacity of unit ¢.
Maximum capacity of unit ¢.
Power capacity of segment &k of
unit 4.

Generation forecast for wind unit

w at time ¢.

Up/down limits for corrective
dispatch of unit .

Bus-generator/bus-load incidence
matrix.

Vector of upper limit for power
flow.

Shift factor matrix.
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1. INTRODUCTION

HE wind generation uncertainty and price-sensitive de-

mand response (DR) introduce new challenges for man-
aging the operational security of electric power systems. Op-
erational data from wind power plants in Denmark [1], Fin-
land [2], and Germany [3] show that the hourly wind energy
may often swing by about 20% of its installed capacity within
a short span of time. Such fluctuations make it a challenging
task to accurately forecast the short-term wind power genera-
tion. State-of-the-art forecasting techniques can predict the wind
farm aggregated power generation for the next several hours
with a forecast error of 5%—20% of the installed capacity [4],
[5]. With DR, the price-sensitive load forecasting would require
additional price-related inputs. However, price forecast errors of
5%-20% are not uncommon [6]-[8], which will further deteri-
orate the accuracy of price-sensitive load forecasts.

The modern power systems would have to plan for alternate
backup generation in case the day-ahead wind power generation
forecast does not materialize or the real-time consumption de-
viates a lot from the DR-based load forecasts. When the wind
power penetration reaches a critical level, the dependency of
power systems to wind power generation could inevitably re-
sult in additional supply risks associated with the variability of
wind speed. Furthermore, when DR reaches a critical market
level, the inaccuracy of price-sensitive load forecast could in-
evitably pose real-time electricity balance risks.

The impact of uncertainty on the operational security of
power systems is of fundamental importance when multiple
uncertain factors are integrated into power systems. The op-
erational security of power systems can be addressed via
Stochastic SCUC. In this paper, the uncertainty of wind power
generation is considered in Stochastic SCUC and two distinct
solution approaches are compared for maintaining the opera-
tional security of power systems.

The first one is the scenario-based approach, in which mul-
tiple scenarios are generated to simulate the possible realization
of uncertainties. With presumed probability distribution func-
tions, scenarios are generated by the sampling method or the
direct discretization of uncertain parameters. Reference [9] pre-
sented an effective AC corrective/preventive contingency dis-
patch for the SCUC model to minimize the system operation
cost while maintaining the system security. Reference [10] ex-
plored a decentralized solution to the security-constrained op-
timal power flow problem for large interconnected multi-area
power systems. Reference [11] proposed an analytically-suffi-
cient condition for system demand and network parameters to
manage security constraints in SCUC. Reference [12] used the
N-K contingency criterion to study the impact of random gen-
erator outages on power system security. With the assumption
that the load forecast uncertainty follows a normal distribution,
[13] discretized the normal distribution into intervals and used
mid-points as well as probabilities of individual intervals to rep-
resent load point uncertainties. References [14]-[16] studied the
impact of random generator outages and load forecast errors on
unit commitment (UC) via sample scenario trees. References
[17] and [18] studied the impact of the high penetration wind
power generation on UC, in which the wind forecast uncertainty
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was simulated via scenarios sampled from certain probability
distributions.

A key issue in the scenario-based approach is to generate sce-
narios that would truly reflect the probabilistic characteristics
of system uncertainties. Scenario-generation methods include
MC sampling, moment matching principles, and methods mo-
tivated by stability analysis. A general survey of scenario tree
algorithms is provided in [19]. The scenario-based approach ac-
knowledges a given probability distribution for simulating un-
certainties. A large number of scenarios are usually generated in
order to achieve an acceptable solution accuracy, which could
increase the scale and the computation burden significantly.

The second approach to Stochastic SCUC is the interval
optimization. Instead of sampling scenarios, the interval opti-
mization uses confidence intervals in terms of upper and lower
bounds to represent the uncertainty spectrum, and derives
optimistic and pessimistic solutions for satisfying the system
security requirements. The interval optimization does not
require a presumed probability distribution for uncertainties,
since interval numbers are acceptable for uncertain inputs
[20]-[22]. Reference [23] used the interval optimization to
study the impact of bus load uncertainty on system security.
The solution was obtained by transforming the problem into
two extreme deterministic subproblems corresponding to upper
and lower bounds of desired objective function values. Deci-
sion alternatives were derived by adjusting decision variables
within their solution intervals. Although explicit probability
distributions are not required in the interval optimization, the
uncertainty intervals would need to be carefully selected. A
narrow confidence interval may not cover the entire uncertainty
spectrum and, in turn, lead to a UC solution that would not
correspond to all possible uncertain situations. On the other
hand, a wide interval could lead to pessimistic solutions which
would not utilize system resources efficiently and be of limited
use to system operators.

The chance-constrained UC was used in [24] to study the load
uncertainty by specifying a probability at which stochastic con-
straints would hold. Usually, such chance constraints are non-
convex and generally intractable. The solution to the chance-
constrained UC problem could be obtained by sampling sce-
narios to approximate the true distribution of random variables,
or converting it to a sequence of deterministic UC problems
which converge to the solution of the chance-constrained UC.
The problem scale and the computation burden of the two op-
tions would be comparable to those of scenario-based and in-
terval optimization approaches, respectively.

An efficient solution of Stochastic SCUC problem may often
lack a rigorous representation of uncertainty when considering
complex operating details of generating units and large-scale
transmission networks. In this paper, the Stochastic SCUC
problem is studied and the wind power generation uncertainty
is considered by applying scenario-based and interval opti-
mization approaches. The scenario-based approach generates
multiple scenarios by the MC method to simulate the wind
power generation uncertainty. In addition to the base case
operation cost, the scenario-based approach minimizes ex-
pected costs of corrective actions. The interval optimization
uses interval numbers, in terms of lower and upper bounds, to
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represent the wind power generation uncertainty. The major
contribution of this paper is to compare the two approaches to
the solution of Stochastic SCUC to address the power system
security.

The rest of the paper is organized as follows. Sections II
and III present the scenario-based and interval optimization ap-
proaches. Section IV applies a six-bus system and the modified
IEEE 118-bus system to compare the two approaches. Several
convergence acceleration options are discussed in Section V,
and the conclusion is drawn in Section VL.

II. SCENARIO-BASED STOCHASTIC SCUC

A. Scenario-Based Stochastic SCUC Formulation

A large number of scenarios are generated to simulate wind
speed uncertainty, which would follow the Weibull probability
distribution function with the autocorrelation factor and diurnal
pattern [25]. The hourly wind energy is procured according
to the power curve of wind turbines and hourly wind speed.
Other statistical distributions can be similarly considered. The
low-discrepancy Latin Hypercube Sampling (LHS) technique
is adopted for decreasing the variance of simple MC simulation.
Each scenario is assigned a probability that is one divided by
the number of scenarios. The scenario reduction technique is
adopted to aggregate close scenarios by measuring the dis-
tance between scenarios based on the probability metrics and
eliminate scenarios with very low probabilities for reducing
the scale of the stochastic model and the computation effort
[26], [27]. Other scenario reduction techniques may also be
adopted including measuring the impact of each scenario on
the objective by pre-solving single scenario problems [28], the
target/moment matching which matches specified statistical
properties [29], and the worst-case scenario probability study
which assigns different sets of probabilities by experts and
considers the worse scenario [30].

The objective (1) is to minimize the cost of supplying the
hourly load in the base case (which includes the no-load cost,
startup cost, shutdown cost, and the energy production cost) plus
the expected corrective dispatch cost of scenarios, while satis-
fying various system and unit constraints. The sum of probabili-
ties for all scenarios is equal to one. Thatis, ) p° = 1. Startup
and shutdown costs are considered as time varying variables,
which are functions of the number of hours a generating unit has
been off and on, respectively [36]. In this paper, only non-quick
start generating units are considered in order to facilitate the
comparison of the two optimization approaches. That is, in each
time interval of the base case and in all scenarios, each gener-
ating unit would have the same UC decisions. The formulation
for quick-start units can also be included in the formulation [35].
By defining P, as the power generation of unit 4 at time ¢, seg-
ment %, and scenario s, which satisfies P, = P + AP,
(1) is equivalently converted to (2):

Min ZZlNi'Iit+SUit+SDit+ZCik'1)ikt
t k

Yy [zcik-mat
s t i k

ey

Min Y N[N Ly + SUis + SDif]

t 7
YN [ZP
s t i k

subject to the following constraints.

Constraints for the Base Case: Base case constraints include
the system load balance (3). In addition, system reserve require-
ments are implicitly represented by deviations in the dispatch
solutions of the base case and scenarios, and will be optimally
determined via preventive and corrective actions. Generating
unit constraints include capacity limits of thermal units (4) and
power generation limits of wind power generation units (5):

Z Py + Z P, = Pp: 3)

Pi,min Iy < Py < PP 1
Pit = ZPLM 0 < Pikt < P'nk?ax Iy (4)
k

(@)

0 S Pwt S Pf,wt- (5)

Other unit constraints include minimum on/off time, ramping
up/down rate, reserve capacity, and fuel and/or emission limi-
tations [31], [32]. Other types of units, such as combined-cycle
gas turbine, cascaded hydro, and pumped-storage units, can also
be considered. Transmission network constraints include branch
flow limits (6), which is enforced in the base case to guarantee
the network security of power systems operation:

—PL™* < SF- (Kp - Py — Kp - Ppy) < PL™*_ (6)

Constraints for Each Scenario: Constraints for each scenario
include the system load balance (7), generation limits of thermal
and wind power units (8), and dispatch adjustment capabilities
of generating units (9), which are restricted by the dispatch in
the base case by ramping up/down rate limits. Transmission net-
work constraints (10) are enforced in each scenario to guarantee
the network security:

> P+ Pl =Po %
Pimin . th S stf S I)imax . th
Pist:Ziskt 0 < Py < P™ - e

k

2

Ppi < Pfoy ®)
P — Py < R/? - I
Py — P < RI™-I; ©

— PL™*<SF - (Kp - P{ — Kp - Pp) <PL™2*_ (10)

Other unit constraints include minimum on/off time, ramping
up/down rate, reserve capacity, and fuel and/or emission limi-
tations. The detailed formulation is not included in the paper,
which can be obtained in the authors’ previous work [31], [32].
However, ramping limits between two successive time intervals
in each scenario is not considered because it is assumed that
the scenarios at successive time intervals are independent. That
is, the scenario s at hour 7 is not necessarily a consequence of
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the scenario s at hour (¢ — 1). In addition, the proposed Sto-
chastic SCUC is an hourly based model; thus, it is reasonable
to assume that there is enough time to adjust the system back
to the base case operation status at hour ¢. Thus, ramping con-
straints are used to guarantee the secure and economic transfer
of system operation status between two successive time inter-
vals in the base, and from the base case to all scenarios at each
hour, but not between two successive time intervals in each sce-
nario. In the proposed decomposition framework, the ramping
constraints between two successive time intervals in the base is
considered in the master UC problem (11), and the ramping con-
straints between the base case and each hourly scenario is con-
sidered in the hourly scenario feasibility and optimality check
subproblems (14) and (16).

B. Solution Methodology

The scenario-based Stochastic SCUC model in (2)-(10) is
a large-scale, non-convex, non-deterministic polynomial-time
hard (NP-hard) problem. The corresponding solution for large-
scale systems would be an intractable task without decomposi-
tion. The Benders decomposition (BD) is adopted to decompose
the Stochastic SCUC problem into one master problem and sev-
eral tractable subproblems for each scenario.

1) Master Unit Commitment Problem: The master UC
problem (11) is to minimize the operation cost of the base case
with respect to constraints (3)—(5) and other unit constraints
mentioned above:

Min Y N [Ni-Ti+SUi+SDi]+ > p*- > 65 (11)
t 1 s t

2) Hourly Network Evaluation for the Base Case: The hourly
network evaluation subproblem (12) checks possible network
violations of the master UC solution for the base case. If the
objective value §; of (12) is larger than the predefined threshold,
a feasibility cut (13) will be utilized:

Min s;
St —1-5<PL™>_SF.(Kp-P;—Kp -Pp¢) A1
—1-5,<PL™**41SF.(Kp-P;—Kp -Ppt) Aat
0< s, (12)
— (Are—Aze)” (13)

3) Hourly Feasibility Check for Each Scenario: The hourly
feasibility check subproblem (14) checks possible violations of
the master UC solution in each scenario. If the objective value
S‘f in (14) is larger than the predefined threshold, a feasibility
cut (15) will be utilized:

Kp - (Pe—P¢) + 8 <0.

Min S§ = si + si; + S5,

St.SF-(Kp -P; —Kp-Ppi) —1-s7 < PL™**
—SF~(KP~Pi—KD-PDt)—1~Sf SPLmax
ZP;1+ZP£t+Sit—8§t=PDt

L w
P <R -1y + Py ALt
— P, <R Iy — Py 5.it
P; < PP Iy

S
K1 it
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Fig. 1. Scenario-based approach.
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4) Optimality Check for Each Scenario: The optimality
check subproblem (16) checks the optimality of master UC
solution in each scenario. If the objective value Wts in (16) is
larger than the corrective dispatch cost ] obtained from the
master problem, the optimality cut (17) will be utilized:

Min W7 ="

S
E Cik * Piiy
1 k

S.t. - PL™* < SF - (Kp - Py - Kp - Pp,) < PL™™
Py<RT-Iy+ Py Mg
— P5 < R Iy — Py 5.it
Py < PP,
— Py < —PM LT,
Py — Z Py =0

k
Pﬂj}t S P;,wt

0 2 Wi+ 3 (M RBP4+ A R

S
K1 it

Mg,it
(16)

+i7 i P = 15 Pimin) (L — jit)
+(Mu—Xu) Pa-P2]. an

Fig. 1 shows the flowchart of the scenario-based Stochastic
SCUC solution. The master UC problem (11) is solved first.
The hourly UC and dispatch solutions are then passed on to
the hourly network evaluation subproblems (12). The subprob-
lems will examine the feasibility of the master solution. If a sub-
problem is infeasible which violates the remaining constraints, a
corresponding feasibility cut (13) will be generated and added to
the next calculation of master problem. The hourly UC and dis-
patch solutions are also passed on to the hourly security evalua-
tion subproblem (14) and the optimality evaluation subproblem
(16) in each scenario. If a scenario subproblem is infeasible, a
corresponding feasibility cut (15) will be generated. If the op-
timal objective Wf is larger than the corrective dispatch cost
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A~

67, an optimality cut (17) will be generated and added to the
next iteration of the master problem. The iterative process will
stop when the master solution satisfies feasibility and optimality
checks.

III. INTERVAL OPTIMIZATION FOR STOCHASTIC SCUC

The scenario-based approach in Section II holds a presump-
tion that the wind speed uncertainty follows a certain probability
distribution. However, the wind speed distribution is often more
complex. In addition, a huge number of scenarios are needed in
order to achieve an acceptable solution accuracy, which could
increase the scale and the computation burden of the stochastic
problem. In this section, the interval optimization is adopted as
an alternative for the Stochastic SCUC solution with the consid-
eration of wind power generation uncertainty.

The objective of the interval optimization approach is to mini-
mize the cost of supplying the hourly load in the base case (18).
Different from the scenario-based approach, the interval opti-
mization approach does not hold any presumptions on proba-
bility distributions. The expected corrective dispatch costs are
not explicitly included in the objective function. Instead, the im-
pact of uncertainty on operation costs is reflected via the oper-
ation cost interval:

Min ZZ Zcik'Ijikt+Ni'Iit+SUit+SDit
t i Lk

(18)
The base case constraints are (3)—(6) and constraints describing
the wind power generation uncertainty are given in (19)—(21)
with interval variables PE and PZ,. In (20), the uncertainty in-
terval is derived from a forecasting model [34]. If the forecasting
model does not provide such functionality, the uncertainty in-
terval can be formulated using a percentage of the forecast value
around such forecast value, i.e., (1 £ «). The value of « ranges
from O to 1, for controlling the level of uncertainty under con-
sideration:

> Py +> Ph="rp (19)
Py —R? -1y < PE< Py + R - I

Pimin . Iit S Pj}: S Pimax . I’it

PZ < [Py, P (20)

— PL™** < SF - (KP -P;t - Kp 'PDt) < PL™#*. (21)

A. Feasibility Check for the Interval Optimization Subproblem

In (22), the largest violation would occur when the avail-
able wind power generation is at its minimum PJZ wt- Thus, by
checking the worst case (23), if the objective value S; is larger
than the predefined threshold, a feasibility cut (24) will be uti-
lized. Otherwise, if S; is smaller than the predefined threshold,

the worst case is feasible. Thus, all other cases will be feasible:

Min stjE + slit + sg:t
St.SF - (Kp -P{ —Kp - Ppg) — 1-sf < PL™*

~SF- (Kp - P{ —Kp - Pp;) — 1-sf < PL™>
ZP;E‘:-*_ZPMZFtJ’_Sﬁ_Sg:t:PDt

pit_R?p'fit SPi:ilt: SPit‘FRZ‘Lp‘IAit
Pimin i fit < R::: < Pimax . j’it

= - +
PUJt S [Pf,wt7 Pf,wti|

0< st st st (22)

B. Confidence Intervals

The interval optimization derives the power generation con-
fidence interval [P;; , P;}] for each unit i at each hour ¢, and the
confidence interval [>~, > . (>~ cik - Pi;t + N; Iy + SUH +
Sbit)-,zt > Ok cin f’{};t + N, - Iy + SU + SAD”)] of
the total operation cost, in response to wind power generation
uncertainty. The unique feature of the interval optimization is
that it uses confidence interval numbers to simulate uncertainty,
without considering any assumptions on probability distribu-
tions, and derives optimistic and pessimistic solutions for sat-
isfying the security and economic requirements of power sys-
tems:

Min S; =s; + 81 + Sy
S’.t.SF~(KP~Pt_—KD-PDt) —1.s; <PL™™
—SF-(KP-P;—KD-PDt)—l-St_SPLmax

> P+ Pui+sy— sy =P

Py <R -Iy+Py A,

- Py < Ri‘in Jix — Py /\2_,1',t

P, < P Iy N1_,1:t

- Py <-=P"" Iy it

Pl;t S Pf_wt

0 < s; .81 59 (23)
S [O5 = 354) - (P = P)

+ (5‘1_zt : R?p + 5‘2_zt ) R;ln + ﬁ'l_,it : Pq',max
_ﬂZ_,it : Pimin) (Iiy — fn)] + 5’,_ <0. (24)

IV. CASE STUDIES

A six-bus system and the modified IEEE 118-bus system are
used to analyze scenario-based and interval optimization ap-
proaches to Stochastic SCUC. The case studies utilize CPLEX
12.1.0 on an Intel Core i7 2.67-GHz personal computer.

A. Six-Bus System

The six-bus system shown in Fig. 2 is used to illustrate the
proposed study, which has three regular thermal generators and
one wind farm [31]. Corrective dispatch capabilities of the three
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Fig. 2. One-line diagram of the six-bus system.
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Fig. 3. 24-h load profile and wind power generation forecasts.

thermal units are 9.16 MW, 8.33 MW, and 3.33 MW, respec-
tively. The system load profile and wind power generation fore-
casts for the 24 h are shown in Fig. 3. The wind power gen-
eration is calculated based on wind speed forecasts and wind
turbine power curves, where the cut-in, rated, and cut-out wind
speeds are 5 m/s, 14 m/s, and 24 m/s, respectively. The total in-
stalled wind power generation capacity is 60 MW, which repre-
sents 14.63% of the total system generation capacity. Two cases
are studied here:

Case 1) Stochastic SCUC study at hour 1.

Case 2) The 24-h Stochastic SCUC study.

Case 1: The Stochastic SCUC is studied at hour 1, which is
a high wind and low load hour. The wind speed forecast is 9.44
m/s, which corresponds to the wind power generation of 18.39
MW. The system load is 178.76 MW.

First, the interval optimization approach for the Stochastic
SCUC problem is studied, in which the wind power generation
uncertainty is considered as 20% of its installed capacity, i.e.,
60 * 20% = 12 MW. That is, the available wind power genera-
tion in the pessimistic case is (18.39 — 12) MW, and (18.39 +
12) MW in the optimistic case. The Stochastic SCUC solution
with the interval optimization approach is shown in Table I. The
economic operation strategy while satisfying the operational se-
curity under both pessimistic and optimistic cases is to switch on
the G1 unit only and adopt wind power generation of 15.52 MW,
6.36 MW, and 24.68 MW in the base case, pessimistic case, and
optimistic case, respectively. In this case, the corrective dispatch
capability of G1 can balance the wind power generation uncer-
tainty and securely transfer the system operation status from the
base case to both pessimistic and optimistic cases. The interval
optimization method also provides an operation cost interval of
[$3114.34, $3496.68].

Second, the scenario-based approach is used to study the
Stochastic SCUC. The wind speed is assumed to follow the
Weibull distribution and its uncertainty is simulated via 10 000
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TABLE 1
INTERVAL OPTIMIZATION RESULTS IN CASE 1

Cost($) GI(MW) G2(MW) G3(MW) Wind (MW)
Base case 3,305.38  163.24 0 0 15.52
Pessimistic 3,496.68  172.40 0 0 6.36
Optimistic 3,114.34  154.08 0 0 24.68
TABLE II

SCENARIO-BASED RESULTS IN CASE 1 (REDUCED 100 SCENARIOS)

Cost($) GIMW) G2(MW) G3 (MW) Wind (MW)
Base case  3437.19 169.60 0 0 9.16
Corrective action-75.12  160.43-178.76 0 0 0-18.33
TABLE III

INTERVAL OPTIMIZATION RESULTS FOR 40% WIND VOLATILITY IN CASE 1

Cost(§) GI(MW) G2(MW) G3MW) Wind (MW)
Base case  3,437.84 169.60 0 0 9.16
Pessimistic  3,632.93 178.76 0 0 0
Optimistic  3,246.79 160.44 0 0 18.32

scenarios. The scenario reduction is used to reduce the scale
and the computation time of the stochastic model. Table II
shows the results with the reduced 100 scenarios. The expected
operation cost is $3362.07, which includes the base case cost of
$3437.19 and the expected corrective dispatch cost of $—75.12.

In the interval optimization approach with 20% wind power
generation uncertainty, 6.36 MW wind power generation is
available in the pessimistic case. This makes it possible to
adopt 15.52 MW wind power generation in the base case, with
a corrective dispatch of 9.16 MW provided by G1. In compar-
ison, the scenario-based approach includes scenarios with wind
speeds lower than the cut-in value, which derives 0 MW wind
power output. In order to securely transfer the system operation
status from the base case to scenarios, the base case would
dispatch 9.16 MW of wind power generation, which leads to a
higher base case cost than that of the interval optimization.

The sensitivity analysis is performed for the two approaches.
Table III shows the interval optimization results when the wind
power generation uncertainty is assumed to be 40% of the in-
stalled wind power generation capacity, i.e., 40% * 60 = 24
MW. In this situation, the pessimistic case will have 0 MW wind
power output, which adopts 9.16 MW wind power generation in
the base case and derives the same base case result as that of the
scenario-based approach in Table II. This study shows that the
interval optimization solution is very sensitive to the presumed
wind uncertainty interval. Fig. 4 shows the operation cost for
all 100 scenarios and the operation cost intervals for the interval
optimization approach. All scenario costs fall within the lower
and upper bounds derived from the interval optimization, which
indicates that when the wind uncertainty interval is properly set,
the interval optimization could provide accurate operation cost
boundaries to cover possible scenarios in the scenario-based ap-
proach.

Table IV shows the expected corrective dispatch costs of dif-
ferent tests in the scenario-based approach. For all tests, the base
case UC results are the same as those in Table II. In Table IV,
the tests with different number of original scenarios and the
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Fig. 4. Scenario operation costs and the operation cost interval.

TABLE IV
EXPECTED CORRECTIVE DISPATCH COSTS IN CASE 1 ($)

# of scenarios after scenario reduction

# of original scenarios 5 10 100
1,000 -70.47 -74.91 -74.92
10,000 -70.78 -75.15 -75.12
10,000 (Another sample) -70.75 -75.10 -75.12
TABLE V

RESULTS FOR EACH SCENARIO IN CASE 1 (REDUCED FIVE SCENARIOS)

S1 S2 S3 S4 S5

Probability 0.171 0.211 0.346 0.113 0.159
Available wind

power (MW) 0 29.76 59.82 3.44 12.72
Adopted wind

power (MW) 0 18.33 18.33 3.44 12.72

Scenario cost ($)  3,632.93 3,246.79 3,246.79 3,559.20 3,363.75
Corrective cost (§) 19543  -190.40 -190.40 122.01 -73.44

same number of reduced scenarios have close expected cor-
rective dispatch costs. In addition, ten appears to be an appro-
priate number of scenarios since their expected corrective dis-
patch costs are quite close to those of 100 scenarios; though the
cost of five scenarios deviates a lot. Furthermore, the last two
rows of Table IV show that the expected corrective dispatch
costs of another 10000 sample test are quite close to those of
the first 10000 scenario sample test, which shows that the ex-
pected corrective dispatch costs are stable for different scenario
samples. Table IV shows that, in this case, the expected correc-
tive dispatch costs are all negative for different tests. This is be-
cause in most scenarios, the amount of wind power generation
adopted is higher than that of the base case. Thus, less genera-
tion from regular thermal units is needed and the scenario op-
eration cost is lower than that of the base case. Table V shows
the test results with reduced five scenarios. In this study, sce-
narios 2, 3, and 5 would adopt more wind power generation
and correspondingly have lower scenario operation costs than
the base case. The total probability of scenarios 2, 3, and 5 is
0.211 4 0.346 4 0.159 = 0.716, which brings out the negative
expected corrective dispatch cost of $—70.47.

Case 2: The 24-h Stochastic SCUC is studied in this case.
Tables VI and VII show the 24-h Stochastic SCUC results with
the interval optimization and the scenario-based approaches, re-
spectively. Table VI show that the expected operation costs of
test cases, given in Table VII, fall in the operation cost interval
of [$100048.78, $109 294.13]. Table VII again shows that ten
would be an appropriate number of scenarios in this case since

TABLE VI
INTERVAL OPTIMIZATION RESULTS IN CASE 2
Base case Pessimistic Optimistic
Cost ($) 105,595.50 109,294.13 100,048.78
TABLE VII
SCENARIO-BASED RESULTS IN CASE 2 ($)
# of scenarios after reduction 5 10 100
Expected cost for the firstrun  102,270.05 103,887.93 104,295.86
Expected cost for the second run 102,294.87 103,835.80 104,273.27
250 1 Wind (MW) Wind Farm 1
= = Wind Farm 2
200 4 Wind Farm 3
150 -
100 -
50 4
0 T T T T
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Fig. 5. Wind power generation forecasts for the three wind farms.

TABLE VIII
INTERVAL OPTIMIZATION RESULTS FOR 24 H ($)
Wind Uncertainty Base case Pessimistic Optimistic
15% 2,006,689.78 2,032,250.47 1,968,175.55
25% 2,006,844.22 2,042,033.43 1,944,019.38
TABLE IX
SCENARIO-BASED RESULTS FOR 24 H ($)
# of scenarios after reduction 5 10 100

Expected cost for the first run
Expected cost for the second run

1,969,428.82 1,970,747.87 1,969,768.34
1,971,080.53 1,970,771.70 1,969,547.27

their costs are close to those of 100 scenarios (i.e., the differ-
ences are (104 295.86 — 103 887.93)/104 295.86 = 0.39% and
(104273.27 — 103835.80) /104 273.27 = 0.42%). In addition,
the expected costs are stable with different replications (i.e.,
the differences are (102270.05 — 102294.87)/102270.05 =
—0.024%, (103 887.93 — 103835.80)/103887.93 = 0.05%,
and (104 295.86 — 104 273.27) /104 295.86 = 0.022%).

B. IEEE 118-Bus System

The modified IEEE 118-bus system with 54 thermal units,
three wind farms, and 186 branches is studied. The peak load
is 7200 MW with detailed generator and transmission network
data given in [31]. The 24-h wind power generation forecasts
for the three geographically dispersed wind farms are shown in
Fig. 5.

Table VIII shows operation costs of the base case, the pes-
simistic case, and the optimistic case for the entire 24 h, when
the wind power uncertainty is considered to be 15% and 25% of
the total installed wind power generation capacity, respectively.
Table IX shows operation costs of test cases with 10000 orig-
inal scenarios for the scenario-based approach. In comparison,
the scenario-based solutions are more rigid, i.e., the optimal
objectives values are approximately the same in test cases.
However, the objective intervals in the interval optimization
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deviate a lot as the wind power uncertainty interval is changed.
When the wind power uncertainty is increased from 15% to
25%, the costs of pessimistic and optimistic cases would change
by (2042033.43 — 2032250.74)/2032250.74 = 0.48% and
(1944019.38 — 1968175.55)/1968175.55 =—1.23% al-
though the base case costs are close. In comparison, changes in
the expected operation costs of test cases are within 0.084% in
the scenario-based approach.

The interval optimization approach takes five iterations with
a computation time of 73 s to reach the optimal solution. For
the scenario-based approach, with the reduced ten scenarios, it
takes seven iterations with a computation time of 178 s. For re-
duced 100 scenarios, it needs 20 iterations with the total compu-
tation time of 2108 s. Since the Stochastic SCUC is an NP-hard
problem, the increase in the number of scenarios will dramati-
cally increase the computation burden. In comparison, the com-
putation time for the interval optimization is equivalent to that
of a scenario-based approach with the consideration of only two
scenarios.

V. ACCELERATION STRATEGY

The computation burden of the scenario-based approach for
the Stochastic SCUC problem may be improved by applying the
following options:

1) Tighten the master UC problem formulation (11). It is con-
ceivable that the inclusion of system reserve requirement
and/or a few scenarios in the first iteration of the master
UC problem would result in a better initial UC solution.

2) Make use of the specific structure of Stochastic SCUC
problem in certain cases for eliminating optimality cuts.
An alternative partition strategy enabled by the combina-
tion of (11) and (16) as the master problem may eliminate
the need for optimality cuts and require fewer iterations,
when a combined optimization of the MIP problem (11)
and (16) is possible.

3) Adopt acceleration strategies proposed for the determin-
istic SCUC [11], [32]. Reference [11] proposed a necessary
and sufficient condition to identify and eliminate inactive
security constraints in the SCUC problem, for reducing the
problem scale and the computation burden. Reference [32]
explored a reasonable operational strategy for fixing and
unlocking generating units at each SCUC iteration, to con-
trol the iterative SCUC solution efficiently and accelerate
the execution.

4) Generate multiple strong cuts to accelerate the con-
vergence of the Benders decomposition approach [33].
Multiple strong cuts would restrict the feasible region of
the master UC problem at each iteration and, in turn, result
in a significant reduction in the number of iterations and
the necessary CPU time for computation. Subproblems
for generating additional cuts can be executed in parallel,
which would not introduce any extra computation time.

VI. CONCLUSIONS

The impact of various uncertainties on the operational se-
curity of power systems is becoming more important, as more
uncertainty factors are integrated into power systems. This
paper evaluates the scenario-based approach and the interval
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optimization approach for the Stochastic SCUC solution with
the consideration of uncertain wind power generation. A six-bus
system and the modified IEEE 118-bus system are studied to
evaluate the two approaches. The scenario-based approach
provides more stable solutions. However, the scenario-based
approach may come with larger problem scales and higher
computation burdens. A few convergence acceleration options
are referred to in the paper for overcoming the computation
obstacles of the scenario-based approach. More research on this
issue will be required in the future. The interval optimization
approach requires less computation time to generate lower and
upper bounds automatically for the objective value. However,
its optimal solution is very sensitive to the uncertainty interval.
In addition, the interval optimization may not be suitable for
simulating discrete uncertain variables such as random outages
of generators and transmission lines in power systems.
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