A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce Development

Final Technical Report

DOE Award Number: DE-EE0002979

Project Period: January 15, 2010 to August 1, 2012

Principle Investigator:

Dr. Mohammad Shahidehpour, Director Galvin Center for Electricity Innovation Email: ms@iit.edu Phone: 312-567-5737

> Illinois Institute of Technology 3300 South Federal Street Chicago, IL 60616-3793

Project Team Members (in Alphabetical Order):

Acciona Wind Energy USA, Alstom Grid, Dakota Power, Electric Power Research Institute, EnerNex, Innovative Technology Applications Company, Intellergy, Intelligent Power Solutions, Invenergy, Keyworks, McCoy Energy, S&C Electric, SmartSignal (Now GE Intelligent Platforms), Southern Illinois University, Three Point Square, University of Chicago, Wiedman Power System Consulting

October 30, 2012

Acknowledgment

This report is based upon the work supported by the U. S. Department of Energy under Award Number DE-EE0002979. On behalf of the Consortium members of this project, I would like to thank the U.S. Department of Energy for making this study possible. The many tasks of this two-year study could not have been completed without the dedicated effort of all Consortium members. We look forward to continuing our technical and educational collaborations, and utilize the expertise developed as part of this study, beyond the completion of the proposed tasks.

Mohammad Shahidehpour, Principal Investigator Bodine Chair Professor and Director Robert W. Galvin Center for Electricity Innovation Illinois Institute of Technology Chicago, IL 60616

Disclaimer

Any findings, opinions, and conclusions or recommendations expressed in this report are those of the author(s) and do not necessarily reflect the views of the Department of Energy. The material made available in this publication is part of the DOE final report. Copyrights and all rights therein are retained by copyright holders. All individuals who use this report are required to adhere to the copyright terms and conditions.

Table of Contents

Acl	know	led	gment	ii
Dis	claim	er		. iii
Tal	ole of	Со	ontents	.iv
List	t of A	cro	nyms	vii
List	t of Fi	gu	res	. xi
List	t of Ta	abl	es	xxi
List	t of A	pp	endicesx	xii
Exe	ecutiv	e S	Summary	1
1.	Intro	odu	uction	3
 2	Back	ar	ound	5
2. ว	Dack	8'' 	and Discussions	د م
5.	Resu	nts		9
3	.1 0	Con	sortium Wind Unit Installation	9
	3.1.1		Wind Unit Installation at Grand Ridge, Illinois	9
		A.	Wind Unit Procurement	9
		Β.	GE 1.5MW Wind Turbine	. 12
	3.1.2		Wind Unit Installation at IIT	19
		A.	Viryd 8kW Wind Turbine	. 19
		В.	Viryd Lab Unit Installation at IIT	.24
		C.	Viryd Field Unit Installation at IIT	. 29
3	.2 \	Nir	nd Energy Research and Development	32
	3.2.1		Wind Turbine Research	32
		A.	Predictive Analytics to Improve Wind Turbine Reliability	. 32
		Β.	Improve Wind Turbine Power Output and Reduce Dynamic Stress Loading Through	
			Advanced Wind Sensing Technology	. 38
		C.	Phasor Measurement Units Installation	.78
		D.	Use High Magnetic Density Turbine Generator as Non-rare Earth Power Dense	
			Alternative	. 79

	Ε.	Survivable Operation of Three Phase AC Drives in Wind Generator Systems	
	F.	Wind Turbines Acoustics – Localization of Wind Turbine Noise Sources	
	G.	Wind Turbine Acoustics – Numerical Studies	
	Н.	Performance of Wind Turbines in Rainy Conditions	
3.2	.2	Wind Energy Integration	237
	A.	Analysis of 2030 Large-Scale Wind Energy Integration in the U.S. Eastern	
		Interconnection	
	В.	Large-scale Analysis of 2018 Wind Energy Integration in the U.S. Eastern	
		Interconnection	
	C.	Integration of Non-dispatchable Resources in Electricity Markets	
	D.	Integration of Wind Unit with Microgrid	
3.3	Win	d Energy Education and Outreach	296
3.3	.1	Wind Energy Training Facility Development	296
	A.	Robert W. Galvin Center for Electricity Innovation	
	В.	WINS: Wind Integration Simulator	
	C.	Situation Awareness at Control Center: e-terravision	
3.3	.2	Wind Energy Course Development	304
	A.	Engage Undergraduates in Wind Energy Research	
	В.	Develop Graduate Courses in Wind Energy	
	C.	Develop Professional Training Courses in Wind Energy	
3.3	.3	Wind Energy Outreach	346
	A.	First Consortium Conference, September 30, 2010	
	В.	Second Wind Consortium Conference, July 20, 2011	
	C.	Great Lakes Symposium on Smart Grid and the New Energy Economy 2011	
	D.	Great Lakes Symposium on Smart Grid and the New Energy Economy 2012	
4. Ac	comj	olishments	359
4.1	Awa	ard	359
			200
4.2	List	of Presentations	360
4.2	.1	Presentations at the First Consortium Conference	360
4.2	.2	Presentations at the Second Wind Consortium Conference	361
4.2	.3	Other Presentations	362
4.3	List	of Videos	362
4.4	List	of Theses	363
4.4	.1	Ph.D. Dissertations	363

	4.4.2	2	M.S. Theses	373
4	.5	List	of Papers and Reports	379
	4.5.1	-	Journal Publications	379
	4.5.2	2	Conference Publications	389
	4.5.3	5	Manuscripts in Preparation	392
	4.5.4	ŀ	Unpublished Reports	393
4	.6	List	of Courses	397
	4.6.1	-	Undergraduate Courses	397
		A.	IPRO 311 – Integration of Plug-in Hybrid Electric Vehicles and Renewable Energy Systems	397
		В.	IPRO 323 – Modeling of Building Integrated Wind Turbine Modules	397
		C.	ECE 456 – Embedded Control and Mechatronics	397
		D.	ECE 486 – Wind Energy Research Paper	398
		E.	ECE 495 – Capstone Senior Design Project	398
	4.6.2	2	Graduate Courses	398
		A.	ECE 580 – Elements of Sustainable Energy	398
		В.	ECE 581 – Elements of Smart Grid	399
		C.	ECE 581 – Wind Energy Power Systems	. 399
	4.6.3	3	Professional Course	399
		A.	Wind Energy Technology, Interconnection & Integration	399
5.	Con	clu	sions	400
6.	Reco	om	mendations	407
Re	feren	ces	5	409
Ар	pend	ice	S	420

List of Acronyms

A/D	Analog/Digital
AC	Alternating Current
ADS	Acoustic Data Surface
AEP	Annual Energy Production
AGC	Automatic Generation Control
AMR	Adaptive Mesh Refinement
AWC	Atlantic Wind Connection
BLDC	Brushless Direct Current
ССМ	Cross Correlation Matrix
CF	Capacity Factor
CFD	Computational Fluid Dynamics
CLSC	CLEAN-SC, CLEAN based on source coherence
CO2	Carbon Dioxide
COE	Cost of energy
ComEd	Commonwealth Edison
СР	Power Capture
CSC	Current Source Converter
CSM	Cross Spectral Matrix
CTW	Catch the Wind, Inc.
CVP	Continuously Variable Planetary
CVT	Continuously Variable Transmission
DAMAS	Deconvolution Approach for the Mapping of Acoustic Sources
DAS	Delay and Sum
DAS	Data Acquisition System
DB	Database
DC	Direct Current
DCF	Domain Connectivity Function
DFIG	Doubly Fed Induction Generator
DFIM	Doubly Fed Induction Machine
DH	High Duty Cycle
DL	Low Duty Cycle
DNR	Illinois Department of Natural Resources
DOE	Department of Energy
DOF	Degree-Of-Freedom
DP	Dakota Power
DP (filter)	Filter Differential Pressure
DPM	Lagrangian Discrete Phase Model
DSP	Digital Signal Processing
DTF	Dynamometer Test Facility
ECE	Electrical and Computer Engineering

ECEDHA	Electrical and Computer Engineering Department Heads Association
EMF	Electric and Magnetic Fields
EMS	Energy Management System
EPRI	Electric Power Research Institute
FDBF	Frequency Domain Beamforming
FEA	Finite Element Analysis
FEMM	Finite Element Magnetics Method
FERC	Federal Energy Regulatory Commission
FFT	Fast Fourier Transform
GE	General Electric
GENCO	Generation Company
GIS	Geographical Information System
GMP	Geometry Manipulation Protocol
GUI	Graphical User Interface
GW	giga-watt
GWh	giga-watt-hour
HAWT	Horizontal-Axis Wind-Turbine
HVAC	Heating, Ventilation, & Air Conditioning
Hz	Hertz
I/O	Input/Output
IEC	International Electrotechnical Commission
IEEE	The Institute of Electrical and Electronics Engineers
IG	Induction Generator
IGBT	Insulated Gate Bipolar Transistors
IIT	Illinois Institute of Technology
IM	Induction Motor
IPPSC	Intelligent Perfect Power System Controller
IPRO	Interprofessional Project
IPS	Intelligent Power Solutions, LLC
ISO	Independent System Operator
IT	Information Technology
ITAC	Innovative Technology Applications Company, LLC
ITP	Incidental Take Permit
KERI	Korea Electrotechnology Research Institute
kV	kilo-volt
kW	kilo-watt
kWh	kilo-watt-hour
LIDAR	Light Detection And Ranging
LMP	Locational Marginal Price
LWS	Laser Wind Sensor
MB	mega-byte
MISO	Midwest Independent System Operator
MMAE	Mechanical, Materials, and Aerospace Engineering

MMS	Market Management System
MOSFET	Metal–Oxide–Semiconductor Field-Effect Transistor
MS	Microsoft
MTEP	MISO Transmission Expansion Planning
MTS	Modular Tower System
MUT	Machine Under Test
MW	mega-watt
MWh	mega-watt-hour
NASA	National Aeronautics and Space Administration
NEMA	National Electrical Manufacturers Association
NERC	North American Electric Reliability Corporation
NETCS	National Electric Transmission Congestion Study
NFAC	National Full-Scale Aerodynamics Complex
NPT	National Pipe Thread Tapered Thread
NREL	National Renewable Energy Laboratory
OCS	Optical Control System
OEM	Original Equipment Manufacturer
OTS	Office of Technical Services
РСВ	Printed Circuit Board
PHEV	Plug-in Hybrid Electric Vehicle
PI	Principal Investigator
PJM	Pennsylvania-New Jersey-Maryland
PLC	Programmable Logic Controller
PM	Permanent Magnet
PMSM	Permanent Magnet Synchronous Motor
PMU	Phasor Measurement Units
POMS	POwer Market Simulator
PV	Photovoltaic
PWM	Pulse With Modulation
RFP	Request for Proposal
ROR	reduced-order representation
RPM	Revolutions Per Minute
SA	Supervisor Agent
SCADA	Supervisory Control and Data Acquisition System
SCUC	Security-Constrained Unit Commitment
SIU	Southern Illinois University
SMI	Standard Module Interface
SOC	State of Charge
SPIV	Stereoscopic Particle Image Velocimetry
SPL	Sound Pressure Level
SQL	Structured Query Language
SR	Switched Reluctance
SRDCM	Switch Reluctance DC Machine

Switched Reluctance Machine
Shear-Stress Transport
Special Use Permits
Space Vector Pulse Width Modulation
Total Harmonic Distortion
Tip Speed Ratio
terra-watt
terra-watt-hour
Universal Serial Bus
Vehicle to Grid
Volt-Amp-Reactive
Virtual Local Area Network
Eulerian Volume of Fluid Model
Virtual Private Network
Vehicle Power and Propulsion Conference
Voltage Source Converter
Wind Energy Conversion Systems
Wind Farm Management System
Wind Generation
Wind INtegration Simulator
IIT Wanger Institute for Sustainable Energy Research
Wind Power Plants
Wind Turbine Contract
Wind Turbine Generator
Wind Turbine Generating Unit
Extensible Markup Language

List of Figures

Figure 1: Screenshots of IIT Wind Turbine at Grand Ridge Wind Farm	11
Figure 2: GE Energy 1.5SLE/XLE 60Hz Wind Turbine Generator	12
Figure 3: GE Energy 1.5SLE/XLE 60Hz Wind Turbine Nacelle Layout	13
Figure 4: Power performance for winter operation	18
Figure 5: TSR pitch control schedule	18
Figure 6: Viryd 8KW Wind Turbine Technical Specification	20
Figure 7: Viryd 8KW Wind Turbine Power Curve	22
Figure 8: Viryd 8KW Wind Turbine Annual Energy Production	22
Figure 9: Cross-Section and Components of the Viryd Wind Turbine	23
Figure 10: Viryd 8kW Unit Fully Instrumented and Designed for the IIT Lab	26
Figure 11: Screenshot of the Lab Unit	27
Figure 12: Screenshot of the Lab Unit	28
Figure 13: Viryd 8kW Unit Installed at the IIT Soccer Field	29
Figure 14: Installation Chronology for the Viryd 8kW Unit at the IIT Soccer Field	30
Figure 15: Display of the Wind Speed and Power Output for the Field Unit	31
Figure 16: Screenshot of the Software Monitoring the Field Unit	32
Figure 17: IIT – Invenergy – SmartSignal Wind Project: Overall Network Arrangement	34
Figure 18: IIT – Invenergy – SmartSignal Wind Project: Detail at Grand Ridge Wind Farm	35
Figure 19: Sample SmartSignal Predictive Analytics Display	37
Figure 20: Sample SmartSignal Software Display	38
Figure 21: Catch the Wind Vindicator [®] Laser Wind Sensor	41
Figure 22: The data of a sonic anemometer, mounted on the rear of the nacelle of an operating wind	
turbine	43
Figure 23: The wind speed in front of the turbine, measured with the OCS	44
Figure 24: Outputs of the sonic anemometers	44
Figure 25: Experimental LIDAR data	45
Figure 26: The correlation between the wind speed behind the turbine blades and the free wind	46
Figure 27: The correlations between the different measurement tools	47
Figure 28: A plot of real-time wind speed measured by the OCS and both sonic anemometers	48
Figure 29: The fitted curves of wind speed as measured by the anemometer and the OCS	48
Figure 30: The wind angle, measured each second, of a sonic wind vane mounted at the rear of the	
nacelle	49
Figure 31: The correlations between the sonic wind vanes and the OCS when measuring wind angle	50
Figure 32: Scatter plot of wind angles relative to the turbine measured by a single sonic wind vane	
plotted against the wind angle measured by the OCS, while under legacy control	50
Figure 33: The scatter plot of wind angles of a turbine measured by a single sonic wind vane plotted	
against the wind angle measured by the OCS, while the turbine is under OCS control	51
Figure 34: A scatter plot of output power vs. angle as measured by the OCS	52
Figure 35: A comparison of measured wind angles	53

Figure 36: A scatter plot of all wind speed measurements of a turbine from the beta version of the OC	S
over a period approximately 30 days	.54
Figure 37: The output power of the turbine during the entire period of study	.55
Figure 38: The power output of the turbine, at one-second intervals, over a 100 second period	.56
Figure 39: A scatter plot of power output vs. wind speed	.57
Figure 40: A scatter plot of output power vs. wind speed	.58
Figure 41: The fitted functions for legacy (red curve) and OCS (all three control modes) (blue curve)	.58
Figure 42: The tabulated results of the various control methods.	.59
Figure 43: The fitted functions for legacy (red curve) and OCS Mode 1 (blue curve)	.60
Figure 44: A scatter plot of the output power of the turbine vs. wind angle as measured by the OCS	.62
Figure 45: A scatter plot of power vs. post-rotor wind angle measured by the anemometer	.63
Figure 46: The measured distribution of wind angles, as measured in the post-rotor wind flow	.64
Figure 47: The distribution of yaw angles with respect to the free wind, as measured by the OCS	.65
Figure 48: The distribution of yaw angles, measured in the post-rotor flow by the sonic anemometer	.66
Figure 49: The distribution of yaw angles, based upon the free wind in front of the turbine as measure	ed
by the OCS	.67
Figure 50: The scatterplot of wind angle as measured by the post-rotor anemometer	.68
Figure 51: A contour plot showing curves of constant wind speed	. 69
Figure 52: Simulink model of the yaw control system	.71
Figure 53: Surface plot of the representative power improvement based on the model of cos3 of wind	ł
direction error at the rotor versus the two parameters: yaw threshold and moving average time	.72
Figure 54: Surface plot of the fraction of time yawing versus the two parameters: yaw threshold and	
moving average time	.73
Figure 55: State diagram for the OCS, showing the direction of state transitions	.76
Figure 56: Phasor Measurement Unit (PMU) Installed at IIT's Stuart Building	.78
Figure 57: Stuart Building PMU data showing the building transformer loads, wind turbine, and PV	
system	.79
Figure 58: Growth of Wind Power	.81
Figure 59: Distribution of Wind Resource	.81
Figure 60: Transmission Grid for 400 GW	.81
Figure 61: Skystream Residential Wind Turbine	.82
Figure 62: Stator salient poles	.83
Figure 63: Rotor salient poles	.83
Figure 64: Stator and rotor poles separated by air gap	.83
Figure 65: End of a Switched Reluctance Machine	.83
Figure 66: Magnetic Field Produced by Stator Coil	.84
Figure 67: Dakota Power machine DP-06 mounted in the Dynamometer Test Facility	.87
Figure 68: Comparison of peak specific power of DP-06 of .67 kW /kg to peak specific power of	
commercial machines	.87
Figure 69: IGBT power driver board	.88
Figure 70: Schematic diagram for DP 06	.89
Figure 71: Stator current diagram for generating electricity	.90

Figure 72: Maxwell plot showing the stator reduced flux density	90
Figure 73: The DP-10 lightweight segmented stator	91
Figure 74: DP-10 stator stack wound with 35 turns of 17gauge magnet wire	91
Figure 75: Model of an assembled DP-10 showing the segmented windings	92
Figure 76: Maxwell plot of DP-12 illustrating the unique geometry of the poles of the stator	93
Figure 77: Plot of the Maxwell simulation of the stator current of the three phases of DP-12 with	
operation as a switched reluctance generator	93
Figure 78: Quick Machine model of DP-06.	94
Figure 79: FEMM simulation of DP – 06.	95
Figure 80: MATLAB plot of a parametric sweep of the current and rotor angle – Z Axis torque	95
Figure 81: US annual and cumulative wind power capacity growth [1]	97
Figure 82: Percentage of renewable electricity [1]	97
Figure 83: Unplanned repair cost and risk of failure with wind plant age [1]	98
Figure 84: Failure rate of different component in wind turbine [1]	100
Figure 85: Typical topology of converter	100
Figure 86: Four-leg fault tolerant inverter	101
Figure 87: Redundant inverter topology	102
Figure 88: Wind turbine down time caused by component failure [2]	104
Figure 89: Conventional drive train of wind turbine [2]	104
Figure 90: Tower supported rotor configuration [15]	106
Figure 91: Direct drive wind turbine configuration [2]	106
Figure 92: Equivalent circuit of induction machine in d-q axis	107
Figure 93: Passive converter topology	109
Figure 94: Active converter topology	110
Figure 95: Inverter for induction machine	111
Figure 96: Six-Step waveform	112
Figure 97: Speed torque characteristics at different voltage level	113
Figure 98: Principle of state transition control of induction machine	114
Figure 99: PWM six-step waveform	115
Figure 100: Principle of state transition control of induction machine	115
Figure 101: Speed response in steady state	118
Figure 102: Instantaneous speed read from an incremental encoder	120
Figure 103: Speed error when sampling frequency is 5kHz	122
Figure 104: Speed error when sampling frequency is 10kHz	122
Figure 105: Speed error under different conditions	122
Figure 106: PWM six-step waveform with deadband	123
Figure 107: Induction Machine Phase Voltage with spikes	124
Figure 108: PWM six-step waveform with deadband	124
Figure 109: PWM six-step waveform with deadband	125
Figure 110: Block diagram of the proposed state transition control of Induction Machine	125
Figure 111: Speed response of the state transition control of induction machine	126
Figure 112: Speed response in steady-state	126

Figure 113: Change of duty cycle in steady-state	127
Figure 114: State current in steady-state	127
Figure 115: Hardware setup for experimental verification of proposed state transition control st	rategy of
an Induction Machine	128
Figure 116: Speed response when reference speed is 2850rpm	129
Figure 117: PWM duty cycle profile when reference speed is 2850rpm	129
Figure 118: Phase current of Induction machine during start-up when reference speed is 2850rp	m 130
Figure 119: Phase current of Induction Machine during steady-state when reference speed is 28	50rpm
	130
Figure 120: Speed response when reference speed is 2250rpm	131
Figure 121: Speed response when reference speed is 1125rpm	131
Figure 122: Step change of speed from 2250rpm to 3000rpm	132
Figure 123: Step change of speed from 2250rpm to 1125rpm	132
Figure 124: Hardware setup for experimental verification of proposed state switching	133
Figure 125: Speed response when reference speed is 1025rpm and load torque is 1Nm	134
Figure 126: Phase current and change of PWM duty cycle when reference speed is 1025rpm	134
Figure 127: Speed response when reference speed is 366rpm and load torque is 1Nm	135
Figure 128: Phase current and change of PWM duty cycle when reference speed is 366rpm	135
Figure 129: Speed response when reference speed is 1025rpm and load torque changes from 0.1	5Nm to
1.5Nm	136
Figure 130: Phase current and change of PWM duty cycle when load torque is 0.5Nm	136
Figure 131: Phase current and change of PWM duty cycle when load torque is 1.5Nm	137
Figure 132: Speed response when reference speed changes from 1025rpm to 366rpm	137
Figure 133: Block diagram of state transition control of Induction Generator	138
Figure 134: Speed response of the induction generator	138
Figure 135: Steady state error and change of duty cycle	139
Figure 136: Hardware setup for experimental verification of proposed state switching control str	ategy of
an Induction Generator	139
Figure 137: Speed response when reference speed is 1025 rpm	140
Figure 138: DC link voltage, current and change of duty cycle	140
Figure 139: Phase current and change of duty cycle	141
Figure 140: Speed response when reference speed is 586rpm	141
Figure 141: DC link voltage, current and change of duty cycle	142
Figure 142: Phase current and change of duty cycle	142
Figure 143: Speed response under step change of prime mover torque	143
Figure 144: DC link voltage, current and change of duty cycle at 2Nm	143
Figure 145: Speed response under step change of reference speed	144
Figure 146: Proposed survivable drive for three-phase IM	145
Figure 147: Basic principle of current sensor failure detection	145
Figure 148: Current sensor failure detection method (without DC offset)	146
Figure 149: Isum of three phase currents under different number of current sensor failure	149
Figure 150: Block diagram of vector control	150

Figure 151: Rotor flux position estimation	150
Figure 152: Voltage vector space	152
Figure 153: Ur and UI Calculation	153
Figure 154: Usable area for the voltage vector us	154
Figure 155: Tr and Tl calculation	155
Figure 156: Relationship between switching time variables	156
Figure 157: Limit voltage vector	156
Figure 158: Limit voltage vector within the inscribed circle	157
Figure 159: Limit voltage vector within the hexgon	158
Figure 160: Speed response of vector controlled induction motor	158
Figure 161: Torque performance of vector controlled induction motor	158
Figure 162: Phase current of vector controlled induction motor	159
Figure 163: Speed response of vector controlled induction generator	159
Figure 164: Torque performance of vector controlled induction generator	160
Figure 165: Phase current of vector controlled induction generator	160
Figure 166: The generated DC link current flowing into the battery	160
Figure 167: Braking torque and speed dip caused by misfiring of switches	161
Figure 168: Phasor diagram of rotor flux angle and voltage vector	161
Figure 169: Survivable operation of IM without smooth transition strategy	163
Figure 170: Survivable operation of IM with smooth transition strategy	164
Figure 171: Experimental results of survivable operation of IM in the event of current sensor failure	with
smooth transition strategy (speed ref 1000rpm, load torque 1Nm)	166
Figure 172: Experimental results of survivable operation of IM in the event of current sensor failure	with
smooth transition strategy (speed ref 500rpm, load torque 1Nm)	167
Figure 173: Experimental results of survivable operation of IG in the event of current sensor failure v	with
smooth transition strategy (speed ref 1000rpm, load torque 1Nm)	168
Figure 174: Schematic of (a) components of a wind turbine and (b) Noise producing mechanisms on	а
rotor blade	170
Figure 175: Schematic of (a) the speaker arranged on the rectangular frame support at the 9_0_9	
position and (b) the microphone array	172
Figure 176: Beamform maps of narrowband frequency ranging between	173
Figure 177: Sound pressure level spectra from the microphone array and single microphone respect	ively
of the cases	174
Figure 178: Comparison of beamform maps obtained from FDBF, DMS2, CLSC and TIDY for multiple	
incoherent and coherent sources of the same amplitude (9.6_0.0_9.6)	176
Figure 179: Comparison of beamform maps obtained from FDBF, DMS2, CLSC and TIDY for multiple	
incoherent and coherent sources of different amplitude (9.6_0.0_9.4)	177
Figure 180: Comparison of beamform maps obtained from FDBF, DMS2, CLSC and TIDY for three	
incoherent and coherent sources of the same amplitude (9.6_0.6_9.6)	177
Figure 181: Beamform map of a single oscillating source at three different positions during oscillatio	'n
obtained using TIDY.	178
Figure 182: The GE 1.5 MW wind turbine located at the Invenergy wind farm in Grand Ridge, Illinois.	179

Figure 183: Beamform map of the GE 1.5 MW wind turbine using DAS	. 180
Figure 184: Beamform map of the GE 1.5 MW wind turbine using TIDY.	. 180
Figure 185: Beamform map of the GE 1.5 MW wind turbine using TIDY at a particular instant of time	
during its rotation	. 181
Figure 186: Schematic of. (a) time series of the wind turbine noise measured using the microphone a	array
showing the increase in amplitude due to yaw motor, (b) the beamform map (TIDY) showing the nac	elle
noise at 1087-1149 Hz when the yaw motors are not operational and (c) the beamform map (TIDY)	
showing the nacelle noise at 1087-1149 Hz when the yaw motors are operational	. 182
Figure 187: Viryd 8 kW wind turbine drive train simulator	. 183
Figure 188: Beamform map of the gearbox at wind speed 6 m/s and turbulence 0% using TIDY	.183
Figure 189: Beamform map of the gearbox at wind speed 6 m/s and turbulence 0% using TIDY	.184
Figure 190: Beamform map of the CVP at wind speed 6 m/s and turbulence 0% using TIDY	.184
Figure 191: Locations of Ffowcs Williams-Hawkings surfaces at which data was saved in the unsteady	/ 3-D
case	. 193
Figure 192: Arrangement of the synthetic microphone array used for the Phase I work	. 194
Figure 193: Spectra predicted by PSU-WOPWOP at Microphone 1 location	. 194
Figure 194: Spectra predicted by PSU-WOPWOP at microphone 23 location	. 195
Figure 195: "Side view" orientation of the microphone array	. 195
Figure 196: "Top view" orientation of the microphone array	. 195
Figure 197: "Back view" orientation of the microphone array	. 196
Figure 198: Average array spectra computed at the three different array positions	. 196
Figure 199: Frequency range used for monopole-oriented analysis of 5kHz peak	. 197
Figure 200: Noise sources identified by conventional beamforming	. 197
Figure 201: Noise sources identified by conventional beamforming with enhanced resolution	. 198
Figure 202: Noise sources identified using the DAMAS2 algorithm	. 198
Figure 203: Noise sources identified using the CLEAN-SC method	. 198
Figure 204: Noise sources identified using OptiNav's TIDY algorithm	. 198
Figure 205: Frequency range used for monopole-oriented analysis of 2.5kHz peak	. 199
Figure 206: Low frequency peak noise sources identified using conventional beamforming	. 199
Figure 207: Low frequency peak noise sources identified using conventional beamforming with	
enhanced resolution	. 199
Figure 208: Low frequency peak noise sources identified using DAMAS2	. 200
Figure 209: Low frequency peak noise sources identified using TIDY	. 200
Figure 210: Wide frequency band processing results using conventional beamforming	.201
Figure 211: Wide frequency band processing results using TIDY	.201
Figure 212: TIDY analysis of top view data in a frequency band centered on secondary peak near 1.4	kHz
	.201
Figure 213: TIDY analysis of top view data in a frequency band centered on primary peak near 2.5 kH	lz
	. 202
Figure 214: TIDY analysis of top view data in a frequency band centered on secondary peak near 5 kH	Ηz
	. 202

re 215: TIDY analysis of top view data in a frequency band centered on secondary peak near 7 kH	
	202
Figure 216: TIDY analysis of top view data in a frequency band between 8 and 15 kHz	203
Figure 217: TIDY analysis of 1/3 octave lower frequency bands with the synthetic array in the "bac	:k
view" position	204
Figure 218: TIDY analysis of 1/3 octave higher frequency bands with the synthetic array in the "ba	ck
view" position	204
Figure 219: Summary of beamforming analysis results	205
Figure 220: The NREL 10m research wind turbine	206
Figure 221: Simulated NREL 10 m research wind turbine geometry (solid surfaces)	207
Figure 222: Surface computational mesh in the blade tip region of the NREL 10 m research wind to	urbine
	207
Figure 223: Surface computational mesh in the blade near-hub region of the NREL 10 m research	wind
turbine	208
Figure 224: Cross-section through the centerline of the mesh near the start of the simulation (after	er 8
time steps)	208
Figure 225: Mesh cross-section along centerline after 5488 steps (every other point plotted)	209
Figure 226: Computed surface pressures on the 10 meter wind turbine	210
Figure 227: Streamlines of flow around the wind turbine rotor	210
Figure 228: Iso-surface of vorticity magnitude in the flow around the wind turbine	211
Figure 229: Streamwise force on wind turbine as a function of time step	212
Figure 230: History of forces normal to the streamwise direction on the wind turbine simulation	213
Figure 231: Moments about the base of the wind turbine mast as a function of time	213
Figure 232: Vorticity magnitude behind the wind turbine mast five meters above the ground plane	e 214
Figure 233: Vorticity magnitude on a constant-y plane one meter above the lower limit of the roto	or
sweep	214
Figure 234: Vorticity magnitude on a constant-y plane through the nacelle centerline	215
Figure 235: Vorticity magnitude on a constant-y plane one meter below the upper limit of the rote	or
sweep	215
Figure 236: Pressure on a constant-y plane one meter above the lower limit of the rotor sweep	217
Figure 237: Magnitude of pressure gradient on a constant-y plane	217
Figure 238: Magnitude of pressure gradient on a constant-x plane upstream of the rotor	218
Figure 239: S809 airfoil profile	222
Figure 240: NREL: Phase II (untwisted blade) test configuration	222
Figure 241: 2-D mesh for calculation	223
Figure 242: Refined boundary laver	
Figure 243: 3-D model of the turbine	224
Figure 244: 3-D computational domain	224
Figure 245: 3-D mesh	
Figure 246: S809 Lift coefficients at different AoA	
Figure 247: S809 Drag coefficients at different AoA	
Figure 248: Velocity contour near the airfoil	
J	

Figure 249: Power output vs. wind speed	231
Figure 250: Contours of the water volume fraction on the trailing edge of the airfoil for different any	gles
of attack shows accumulation of water on the airfoil	232
Figure 251: Comparison of lift coefficients at different angles of attack with and without rain	234
Figure 252: Comparison of drag coefficients at different angles of attack with and without rain	234
Figure 253: Lift-to-drag ratio at different angles of attack with and without rain	235
Figure 254: Comparison between pressure coefficient distribution on the airfoil at different angles of	of
attack with and without rain	236
Figure 255: Framework of WINS	238
Figure 256: Potential Wind Sites in the Eastern Interconnection	239
Figure 257: Annual Hourly Load Profile	239
Figure 258: Hourly Production Cost without Wind Integration	241
Figure 259: Potential Wind Sites with CF \ge 40%	241
Figure 260: Monthly Wind Energy and its Contribution to Total Energy in Scenario 2	242
Figure 261: Wind Energy Contribution at Peak/Off-Peak Hours in Scenario 2	242
Figure 262: Hourly Production Cost in Scenario 2	243
Figure 263: Potential Wind Sites with CF≥ 30%	243
Figure 264: Monthly Wind Energy and its Contribution to Total Energy in Scenario 3	244
Figure 265: Wind Contribution at Peak/Off-Peak Hours in Scenario 3	244
Figure 266: Hourly Production Cost in Scenario 3	245
Figure 267: Monthly Wind Energy and its Contribution to Total Energy in Scenario 4	245
Figure 268: Wind Energy Contribution at Peak/Off-Peak Hours in Scenario 4	246
Figure 269: Hourly Production Cost in Scenario 4	246
Figure 270: Energy Portfolio in Wind Integration Scenarios	246
Figure 271: Hourly Energy Provided by Gas Units in Wind Integration Scenarios	247
Figure 272: Hourly Energy Provided by Coal Units in Wind Integration Scenarios	247
Figure 273: Hourly Wind Energy in Wind Integration Scenarios	247
Figure 274: Unit Commitment Result in Wind Integration Scenarios	248
Figure 275: Production Cost in Fuel Cost Scenarios	249
Figure 276: Wind/Non-Wind Energy for Wind Energy Scenarios	250
Figure 277: Production Cost for Wind Energy Scenarios	250
Figure 278: Energy Portfolio in Wind Energy Scenarios	251
Figure 279: Wind/Non-Wind Energy in Load Scenarios	251
Figure 280: Production Cost in Load Scenarios	252
Figure 281: Energy Portfolio in Load Scenarios	252
Figure 282: Hourly Energy Provided by Gas Units in Load Scenarios	253
Figure 283: Hourly Energy Provided by Coal Units in Load Scenarios	253
Figure 284: Unit Commitment Result in Load Scenarios	254
Figure 285: Hourly Energy Portfolio in Carbon Cost Scenarios	255
Figure 286: Hourly Energy Provided by Gas Units in Carbon Cost Scenarios	255
Figure 287: Hourly Energy Provided by Coal Units in Carbon Cost Scenarios	256
Figure 288: Energy Portfolio in Load Shedding Scenarios	256

Figure 289: Unit Commitment Result in Scenario 21	257
Figure 290: Unit Commitment Result in Scenario 22	257
Figure 291: Unit Commitment Result in Scenario 23	257
Figure 292: Hourly Energy Provided by Gas Units in Load Shedding Scenarios	258
Figure 293: Annual Hourly Load Profile	261
Figure 294: The 2018 Hourly Production Cost in Scenario 1	264
Figure 295: The 2018 Hourly Production Cost in Scenario 2	264
Figure 296: The 2018 Annual Average LMPs in Scenario 2	265
Figure 297: Monthly Generation Credit, Load Payment and Production Cost in Scenario 2	265
Figure 298: The 2018 Hourly Production Cost in Scenario 3	266
Figure 299: Monthly Available Wind Energy and its Contribution in Scenario 3	266
Figure 300: The 2018 Hourly Production Cost in Scenario 4	267
Figure 301: Monthly Wind Energy and its Contribution in Scenario 4	267
Figure 302: The 2018 Monthly Available and Dispatched Wind Energy	268
Figure 303: Monthly Generation Credit, Load Payment and Production Cost in Scenario 4	268
Figure 304: Annual Average LMPs in Scenario 4	269
Figure 305: Energy Production Portfolios in Scenarios 1-4	269
Figure 306: Hourly Energy Provided by Gas Units in Scenarios 1-4	270
Figure 307: Hourly Energy Provided by Coal Units in Scenarios 1-4	270
Figure 308: Hourly Wind Energy in Scenarios 2 and 4	271
Figure 309: Transmission Utilization with/without Wind Energy Integration	271
Figure 310: Transmitted Energy in 2018 with/without Wind Integration	272
Figure 311: Levelized Energy Flow in 2018 with/without Wind Integration	272
Figure 312: Annual Unit Commitment in Scenarios 1-4	273
Figure 313: Economic Metrics in Fuel Price Scenarios	274
Figure 314: Levelized Congestion Cost and Wind Energy Contribution in Fuel Price Scenarios	274
Figure 315: Economic Metrics for Available Wind Energy Scenarios	275
Figure 316: Levelized Congestion Cost and Wind Contribution in Wind Energy Scenarios	276
Figure 317: Energy Production Portfolios in Wind Energy Production Scenarios	276
Figure 318: Economic Metrics in Load Scenarios	276
Figure 319: Annual Unit Commitment in Load Variation Scenarios	278
Figure 320: Levelized Congestion Cost and Wind Contribution in Load Scenarios	278
Figure 321: Energy Production Portfolios in Load Scenarios	279
Figure 322: Economic Factors in Carbon Cost Scenarios	279
Figure 323: Levelized Congestion Cost, Wind Contribution, and LMP in Carbon Cost Scenarios	279
Figure 324: Energy Production Portfolios in Carbon Cost Scenarios	280
Figure 325: Economic Factors in Load Shedding Scenario	280
Figure 326: Energy Production Portfolios in Load Shedding Scenario	281
Figure 327: Energy Provided by Load Shedding Scenario	281
Figure 328: Annual Unit Commitment in Scenario 19	281
Figure 329: Overview of IPPSC	286
Figure 330: Viryd Data Logger Communications	287

Figure 331: IPPSC Servers and Software Modules	292
Figure 332: Screen Shot of IPPSC Wind Turbine Page	295
Figure 333: Floor plan of the training facility	297
Figure 334: State-of-the-art facility at the Galvin Center	299
Figure 335: IIT Perfect Power System overview	300
Figure 336: IIT Electric Vehicle Charging Stations	300
Figure 337: IIT Rooftop Solar Installation	300
Figure 338: IIT Large-scale Battery Storage	301
Figure 339: Architecture for the Design and the Implementation of WINS	302
Figure 340: Enhanced Situation Awareness in Control Centers	303
Figure 341: Wind map supplied by the U.S. Department of Energy	306
Figure 342: Power output vs. Hour for 42 turbines	312
Figure 343: One-line Diagram of the 6-bus System	315
Figure 344: Scenario 3 PHEV Load Demand	316
Figure 345: Scenario 4 PHEV Load Demand	316
Figure 346: Scenario 5 PHEV Load Demand	317
Figure 347: Scenario 6 PHEV Load Demand	317
Figure 348: Total operational cost	319
Figure 349: Optimal operational cost.	320
Figure 350: Schematic representation of flow through an actuator disc	323
Figure 351: Plot of velocity ratios versus efficiency	325
Figure 352: Photograph depicting porous plate set-up in wind tunnel	326
Figure 353: Velocity profiles downstream of a porous plate for several streamwise and vertical loca	tions.
Figure 354: Normalized Velocity as a function of normalized streamwise distance for a 62.3% porou	326 JS
plate	327
Figure 355: Photograph of Porous plate and surface shape in wind tunnel.	328
Figure 356: Schematic illustrating several porous plate testing locations.	329
Figure 357: Power output for various wind speeds and mesh locations	329
Figure 358: Surface Design with helical turbines located at the center of each shape	330
Figure 359: Example of a high-rise building with the surface design implemented vertically along th	е
sides of the building	330
Figure 360: Example of shorter buildings with the surface shape designed to cover the roof	331
Figure 361: A schematic of a building with the wind turbine surface design integrated onto the side	331
Figure 362: An example of buildings with the same area and different perimeters	332
Figure 363: Analysis of hotel design and building perimeter.	333
Figure 364: Analysis of power consumption for different sized buildings.	333
Figure 365: Recommendations for future architectural research in IPRO 323	334
Figure 366: Control System Diagram	338
Figure 367: Power System Diagram	338

List of Tables

Table 1: Technical Data for the 1.5MW GE Wind Turbine: Rotor	16
Table 2: Technical Data for the 1.5MW GE Wind Turbine: Pitch System	16
Table 3: Operational Limits of the 1.5MW GE Wind Turbine	16
Table 4: Viryd 8000 Technical Datasheet	21
Table 5: State table for the OCS, demonstrating logic for state transitions	76
Table 6: Dakota Power Switched Reluctance Technology	86
Table 7: Switching Status for Different Regions of Six-step Drive Method	112
Table 8: Switching Status of PWM Six-step Drive Method	115
Table 9: Parameters of the Induction Machine and DC Brush Load Used	128
Table 10: Parameters of the Induction Machine and DC Brush Load Used	133
Table 11: Sensor Failure and Parameters	147
Table 12: The relationship between P and sector number	152
Table 13: Ur and UI calculation table	153
Table 14: Initial Voltage Vectors for State Switching Control Based on Rotor Flux Angle	162
Table 15: Induction Motor Parameters	164
Table 16: Summary of Governing Equations	225
Table 17: Degradation of Lift Coefficient due to the Rain at Different Angles of Attack	233
Table 18: Increase of Drag Coefficient due to the Rain at Different Angles of Attack	233
Table 19: Lift-to-Drag Ratio	233
Table 20: Summary of Simulation Results in All Scenarios	259
Table 21: 24 hour forecasted wind speeds	
Table 22: 24 hour wind speed values at 80 meters above ground level	
Table 23: Vestas V90 wind turbine characteristics	
Table 24: Maximum power, captured power, and produced power by 42 turbines	
Table 25: The coefficients of cost function for generators	
Table 26: Linearized cost functions for generators	
Table 27: Slopes of the linearized cost functions for generators	
Table 28: Annual power output for increasing wind speeds typical of urban environments	

List of Appendices

Appendix A: Project Summary Presentation Appendix B: Grand Ridge Wind Unit Video Clip Appendix C: Journal and Conference Publications

Executive Summary

Since January 2010, the Illinois Institute of Technology (IIT), with an ABET accredited engineering program, has led an extensive effort in forming a world-class wind energy consortium (the Consortium) of multiple universities (domestic and international) and multiple industry participants (all types of wind energy stakeholders) to perform focused research and development on critical wind energy challenges identified in the "20% Wind Energy by 2030" report, including wind technology challenge, grid system integration, and workforce development. During the two-year project period, the consortium members have developed control algorithms for enhancing the reliability of wind turbine components. The consortium members have developed advanced operation and planning tools for accommodating the high penetration of variable wind energy. The consortium members have developed extensive education and research programs for educating the stakeholders on critical issues related to the wind energy research and development.

More specifically,

- The Consortium procured a 1.5MW GE wind unit by working with the world leading wind energy developer, Invenergy, which is headquartered in Chicago, in September 2010. The Consortium also installed advanced instrumentation on the turbine and performed relevant turbine reliability studies.
- The Consortium, by working with Viryd Technologies, installed an 8kW Viryd wind unit (the Lab Unit) at an engineering lab at IIT in September 2010 and an 8kW Viryd wind unit (the Field Unit) at the Stuart Field on IIT's main campus in July 2011, and performed relevant turbine reliability studies. IIT's existing microgrid provides a unique opportunity to see how local wind turbine generation might affect the microgrid.
- The consortium performed research on turbine reliability including (1) Predictive Analytics to Improve Wind Turbine Reliability; (2) Improve Wind Turbine Power Output and Reduce Dynamic Stress Loading Through Advanced Wind Sensing Technology; (3) Use High Magnetic Density Turbine Generator as Non-rare Earth Power Dense Alternative; (4) Survivable Operation of Three Phase AC Drives in Wind Generator Systems; (5) Localization of Wind Turbine Noise Sources Using a Compact Microphone Array; (6) Wind Turbine Acoustics - Numerical Studies; and (7) Performance of Wind Turbines in Rainy Conditions. The consortium performed research on wind integration including (1) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (2) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection; (3) Integration of Non-dispatchable Resources in Electricity Markets; (4) Integration of Wind Unit with Microgrid. The consortium research resulted in
 - o 36 papers
 - o 36 presentations
 - 13 PhD degrees
 - 9 MS degrees
 - o 7 awards

- The education and outreach activities on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development; (3) Wind Energy Outreach.
 - 1) The wind energy training facility is located at the Robert W. Galvin Center for Electricity Innovation at IIT. The Galvin Center brings together faculty, students, researchers, industry, government, innovators, and entrepreneurs to collaborate to improve the reliability, security and efficiency of the electric grid and overcome obstacles to the national adoption and implementation of sustainable energy.
 - 2) For the Wind Energy Outreach, the Center for Electricity Innovation hosted the 2010 meeting of the Consortium members on September 30, 2010 and the 2011 meeting on July 19, 2011 on IIT's main campus in Chicago. Ribbon Cutting Events were held to commemorate the installation of the 1.5MW GE Wind Unit and the 8kW Viryd Wind Unit (the Field Unit) at the 2011 meeting. In addition, the Center for Electricity Innovation hosted the first Great Lakes Symposium on Smart Grid and the New Energy Economy on October 18-19, 2011 and the second on September 24-26, 2012 on IIT's main campus in Chicago. The Symposium featured keynote and plenary sessions, technical presentations, and tutorials by international experts on renewable energy applications.