BlueScout™ Turbine Control Technology

Bill Fetzer

VP Customer Service & Installations

BlueScout Technologies, Inc.

1

Topics

%Introductions
%BlueScout Technologies

* Technical Presentation

R&D Opportunities

Vision

BlueScout Technologies applies groundbreaking wind sensing to turbine control systems to increase the effectiveness and availability of wind turbines, providing increased energy production and decreased operating costs.

Website: www.BlueScout.com

OCS-210

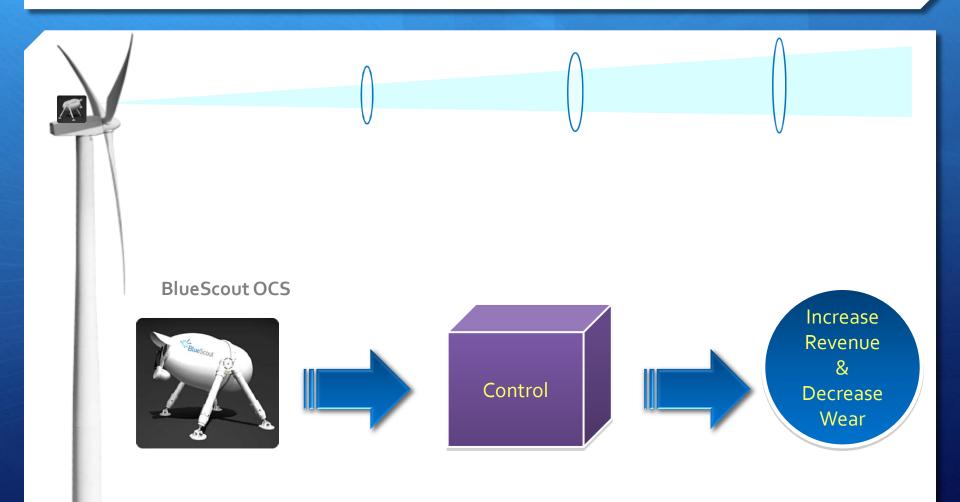
Customers and Partners

The Problem

Problem: Measuring wind behind the world's biggest propeller

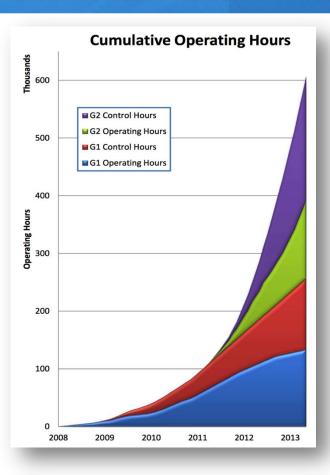
* Effect

- + Leads to poor turbine control response
- + Correction of yaw errors is difficult
- + Pitch control is reactive
- + True power performance needs free steam wind data


** "Analysis of Traditional Yaw Measurement"

The Solution Measure Wind Before the Turbine

BlueScout Experience



— John Keats

*Over 30 installs done or planned

~250,000 operating hours

Strong corporate focus on getting large scale deployments to accelerate operating hours

GE 1.5sle Experience

Installations - 10 deployments + 66,984 hours * Turbines controlled - 8 + 35,856 hours ✤By early Q4 + 9 turbines will be under OCS control **"Controller Description GE 1.5SLE"**

Turbine Control Example

* Test Period – May 2011 through July 2012

Control logic switches at intervals between legacy and OCS control for comparisons

Total control hours: 10,733

*Total hours analyzed: 6,562

*Data analyzed

- + Turbine status = 2 (No faults)
- + Load operation = 1
- + OCS not in state = o

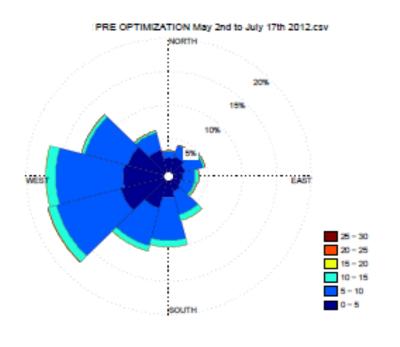
Power Gains

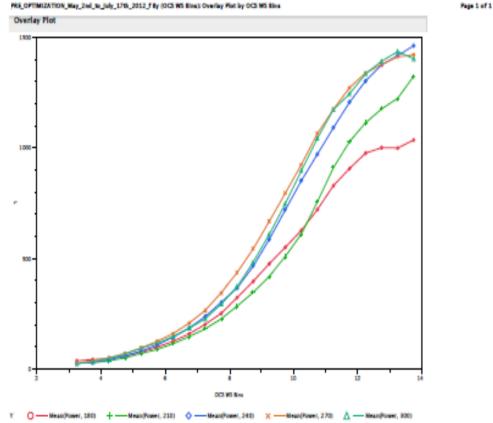
- 4 Customer turbines under study
- Control Method V1.0 power gain is 4%
 - + Optimization will add 2-4% to power increase
- Power NF factor decreases 12%
 - + Power NF = STD (Power) / MEAN (Power)

	Time Weighted Average
Power Increase	4.0%
Power Noise Factor – Legacy Control	0.65
Power Noise Factor – OCS Control	0.58

Potential Benefits of Power "Noise" Reduction

*Generator putting out smoother power


+ Converter is not working as hard


***** Rotor speed may be more constant

- + Blades pitching less and/or pitch management more effective
- + Less wear

Power Curves By Wind Direction

Future Research Opportunities

Measuring stress load reduction related to better yaw control

*Acoustic noise reduction analysis

Generator power noise reduction analysis

- NREL OCS data: Feed forward controls improve speed and torque controls in Region 3 (Rated Power)
- + To be published in AIAA and IEEE papers in 6 months

* How does combined pitch control and yaw control affect power output in Region 2 (ramp up)?

Scout Questions – Follow-up?

Bill Fetzer VP Customer Service and Installations 703-956-6554 - wfetzer@bluescout.com