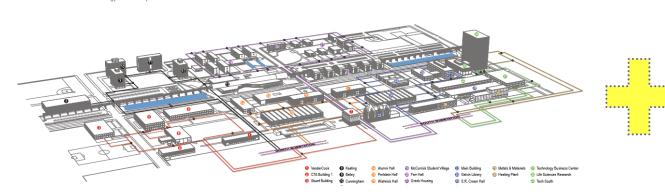
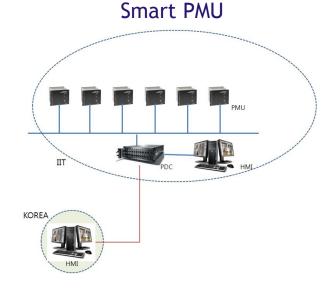
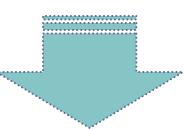


High Reliability Distribution System:

Local area monitoring system for Microgrid


Smart Power Facility Research Center KERI


	Activity	presentation
1	Project Overview	KERI
2	Summary of 1 st year R&D	KLNI
3	Discussion on 2 nd year R&D contents	IIT
		KERI
4	Discussion on Microgrid Workshop	IIT
5	Wrap up	


Basic Concepts

Campus Microgrid Illinois Institute of Technology

High Reliability Distribution System (drewing not to scale) at the Illinois Institute of Technology - Main Campus

•PMU Demonstration for microgrid application

•LAMS for Campus Microgrid field test

•Enlarge PMU application field & Enhance microgrid technology

Title : Local area monitoring system for Microgrid

Total Project Period	Fro	m 01-12-2010 until 3	30-11-2013 (36 month	าร)				
Agreement	Year 1	Year 2	Year 3	Sum				
Project Period	01-12-2010 ~ 30-11-2011	01-12-2011 ~ 30-11-2012	01-12-2012 ~ 30-11-2013	01-12-2010 ~ 30-11-2013				
Korean Lead Organization	\$378,333	\$250,000	\$254,167	\$882,500				
Non-Korean Participati ng Organization	\$125,000	\$125,000 +\$300,000	\$125,000	\$375,000 +\$300,000				
Korean Principal Investigator	Name Dea-Kyeong Kim Position/Title Director							
Non-Korean Principal Name Alexander J. Flueck Position/Title Associate Professor, Electrical/ Investigator Engineering, Illinois Institute of Technology								

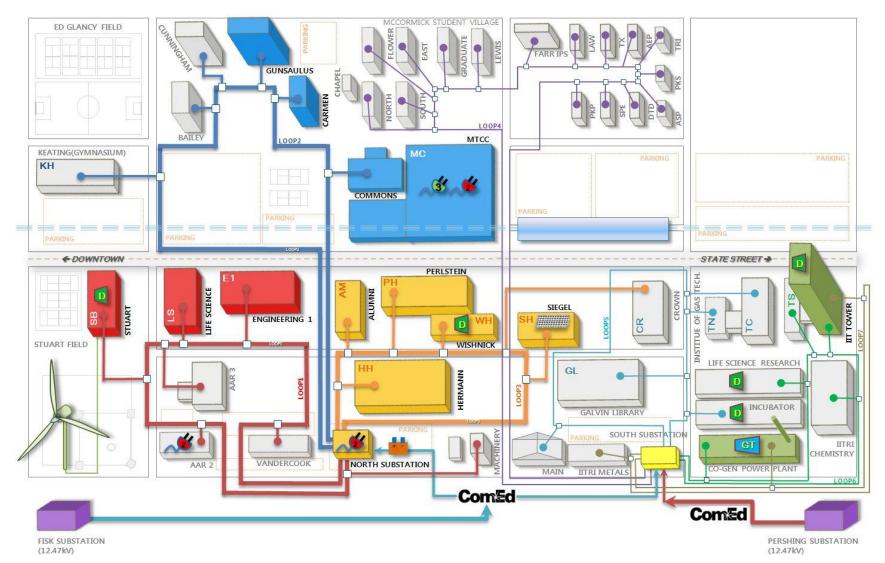
Final Goal	Development of LAMS for Microgrid
Scope	 Development of LAMS for Microgrid Development of Smart PMU for Microgrid Demonstration of LAMS for Microgrid

Scope & Contents

Scope	Contents
Development of LAMS for Microgrid	 Development of LAMS for microgrid Analyze characteristics of load and develop accurate load model for closed loop feeder
Development of Smart PMU for Microgrid	 Implementation of bidirectional information transfer and self-diagnostic function for PMU Development of island detection function for PMU and its field test for microgrid
Demonstration of LAMS for Microgrid	 Demonstration of LAMS for microgrid LAMS field test and operation

Goal Analysis of grid and Dea	sign of LAMS
-------------------------------	--------------

Scope	Contents
Deploy of PMU and Data Collection	 Analyze IIT grid and its environment Decide PMU installation position manufacturing PMU PMU and monitoring system installation Development of data gathering program(HMI) Data collection and analysis
Design of LAMS	 Requirement analysis and functional design of LAMS Design of LAMS


Goal Development of LAMS for Micro	ogrid
------------------------------------	-------

Scope	Contents
S/W Development of LAMS	S/W Development of LAMS system for IIT microgrid
Analyze characteristic load patterns and Develop accurate load model	 Analyze the characteristic load patterns for each closed-loop feeder Perform seasonal shutdown/startup tests Develop accurate load models for each building and each closed-loop feeder under study
	 Development of HMI PDC custumizing and interface
Design of Smart PMU for Microgrid	 Extract design parameters for smart PMU Design of smart PMU for microgrid

Goal Demonstration of LAMS and Smart PMU	
--	--

Scope	Contents
Field Test for LAMS	 Field test of LAMS for microgrid Test and refine PMU load characterization application Improve load models for buildings and closed-loop feeders
Development of Smart PMU for Microgrid	 Implementation of bidirectional information transfer and self-diagnostic function for PMU Development of island detection function for PMU and its field test for microgrid

Installation Site Selection

MICROGRID OF IIT CAMPUS

9

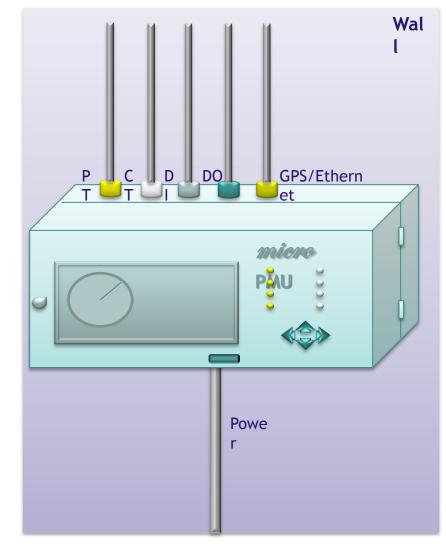
Channel Design for Site Installation

IIT BUILDINGS		PMU ANALOG			DICITAL	MODULES						Domork		
		Device	Туре	PT	СТ	SPARE	DIGITAL	PT8	CT8	PTx/CTx		AI	DI	Remark
1	ENGINEERING 1	1	24/16	12	12	0	16	1	1	1	PT4/CT4	3	1	set 1
2	LIFE SCIENCE	1	24/16	9	9	6	16	1	1	1	PT1/CT7	3	1	set 1
3	STUART	1	32/16	13	13	6	16	1	2	1	PT5/CT3	4	1	set 1
4	GUNSAULUS	1	8/16	3	3	2	16	0	0	1	PT3/CT5	1	1	set 2
5	MTCC & COMMONS	1	24/16	9	9	6	16	1	1	1	PT1/CT7	3	1	set 1
6	HERMANN	1	24/16	9	9	6	16	1	1	1	PT1/CT7	3	1	set 1
7	WISHNICK & PERLSTEIN & ALUMNI	1	32/16	9	18	5	16	1	2	1	PT1/CT7	4	1	set 1
8	SIEGEL	1	16/16	6	6	4	16	0	1	1	PT6/CT2	2	1	set 1
9	NORTH SUBSTATION	1	40/16	6	27	7	16	0	4	1	PT6/CT2	5	1	set 1
10	IIT TOWER	1	24/16	9	9	6	16	1	1	1	PT1/CT7	3	1	set 2
11	LIFE SCIENCE RESEARCH & INCUBATOR	1	24/16	12	12	0	16	1	1	1	PT4/CT4	3	1	set 2
12	CO-GEN POWER PLANT	1	16/16	9	6	1	16	1	0	1	PT1/CT7	2	1	set 2
	Total	12		106	133	49	192	9	15	12		36	12	

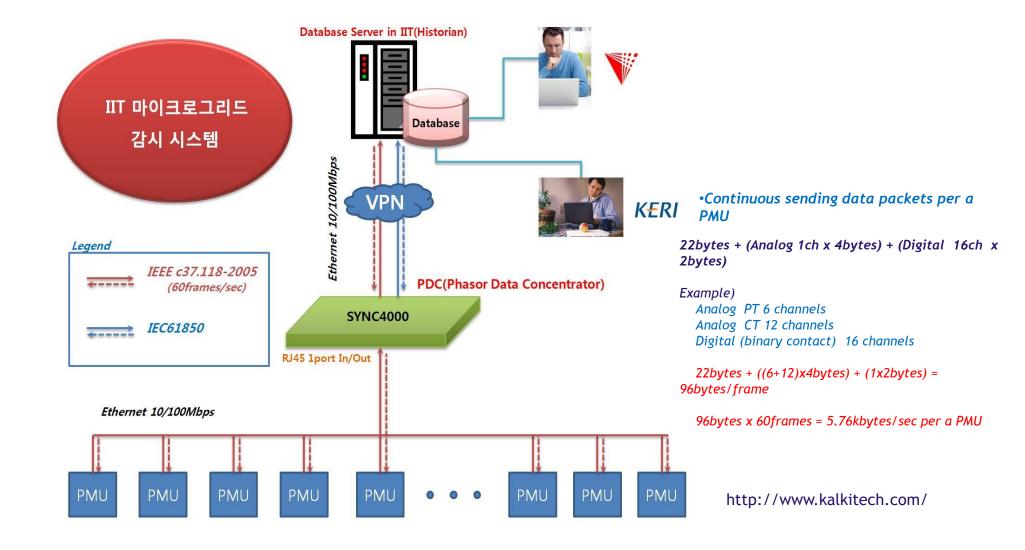
Redesign and Manufacture of PMU(I)

Redesign and Manufacture of PMU(II)

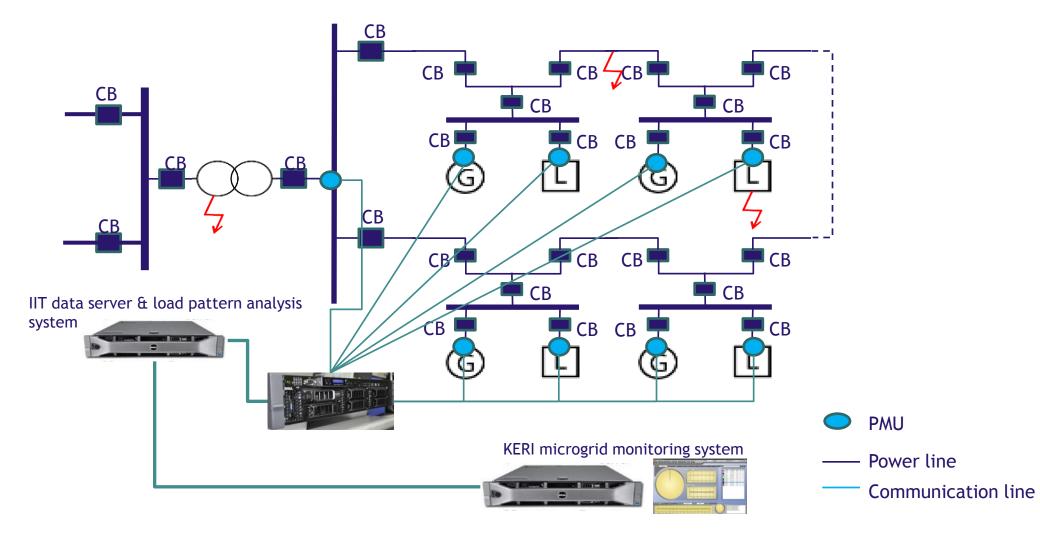
Installation of PMU in Site

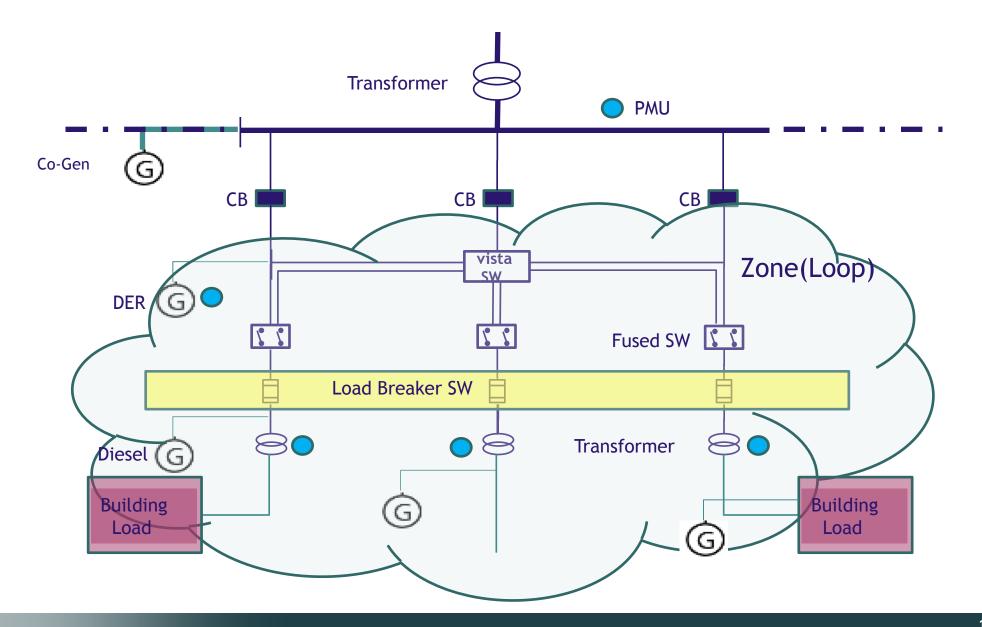


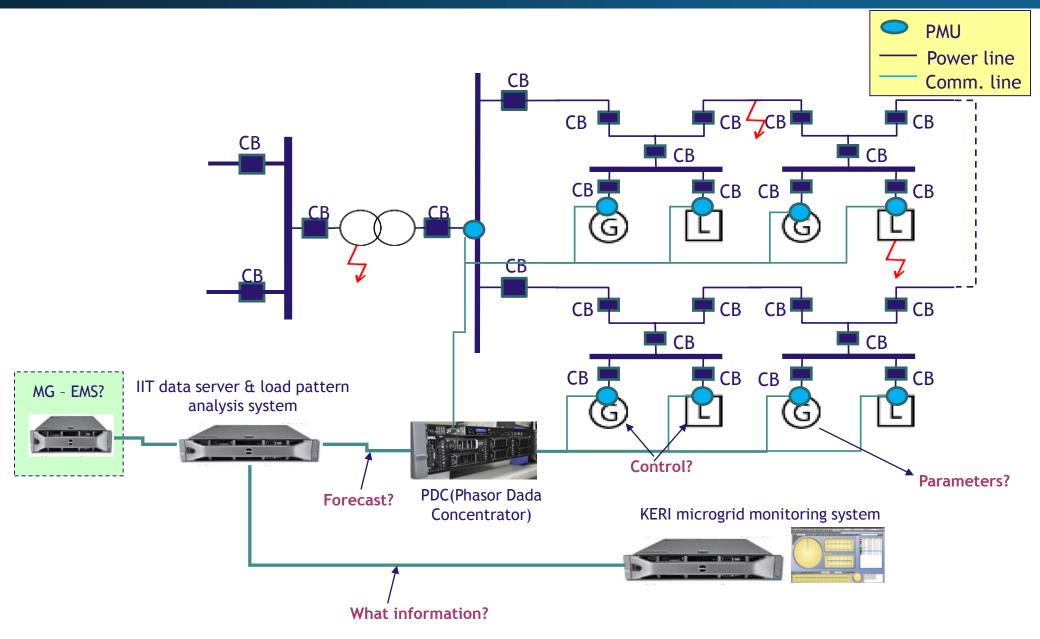
Design Draft of New PMU


Micro PMU Specification(Draft)

- Data Sampling : 256 sample/cycle
- A/D converter
- Voltage Input
- Current Input
- Digital Input
- Digital Output
- PMU Standard
- PMU Data Frame Send
- Communication
- Panel Type
- HMI
- Device Control
- Arithmetic Element
- Function
- Storage
- OS
- Power
- GPS Timesync


- : 16bit
- : 4 channels
 - : 4 channels
 - : 8 channels
 - : 4 channels
 - : IEEE c37.118(2005)
 - : max 60Hz
 - : Ethernet
 - : Wall Mount / Compact Panel
 - : Touch LCD Screen(7 inches)
 - : Remote / Local Key
 - : V, I, angle, Power, PQ,
 - : PMU, DFR, PQ, Island Detection
 - : 16GB Internal Memory
 - : F/W, Windows 7 Embedded
 - : 110Vdc, 220Vac, 30W SMPS
 - : Internal Time synchronization


Design Conceptual Structure of LAMS(I)


Design Conceptual Structure of LAMS(II)

Physical Structure of IIT Grid and LAMS(I)

IIT Microgrid system configuration

KERI work scope in IIT Microgrid

Measuring points of PMU in IIT Microgrid

- ✓ Load : each building
- ✓ Substation output power
- ✓ DER : Co-gen, PV, WT, BESS, etc?
- ✓ Data communication between PMU & IIT Data server

□ Simulation study for load pattern characteristics

- ✓ Scope : DER, distribution network
- ✓ Tools : PSCAD/EMTDC, Matlab/Simulink, RTDS

Discussion

- (1)Modeling & simulation
 - \checkmark Purpose of simulation study \rightarrow level of accuracy, fault simulation, islanding etc
 - ✓ Test/data acquisition for parameter extraction or data sheet?
 - \rightarrow Weather monitoring for radiation, wind speed etc..
- (2)Functions of LAMS
 - ✓ Data server only? Or Load forecast for generation scheduling?
 - ✓ DER/Load control : Setpoints, start/stop, shedding?

Thank you!

