
Abstract: 

Electricity is the lifeblood of modern society, 

and certainly of nearly any commercial or 

industrial operation.  And similar to our bodies, 

we can learn much by examining this “blood” 

more closely.  In a parallel with a human body’s 

circulatory system, changes in electrical flow 

can tell us whether our (electrical) system is 

functioning and healthy.  The trick for our 

facilities, though, is to not always require 

someone with a doctorate level knowledge to 

recognize the problem.  This paper discusses 

advances in machine diagnostics that are for 

the first time being applied to electrical 

systems.  These advances are reducing 

operating costs by both decreasing energy 

consumption, as well as increasing the “life 

expectancy” of equipment -- all through the use 

of electrical system data to recognize tell-tale 

changes within equipment. 

Introduction 

Metering devices are common in facilities.  

Meters measure WAGES (water, air, gas, 

electricity, steam) consumed and establish the 

bill charged for those items.  In the US, buildings 

consume over 70% of all electrical energy 

generated and owners of buildings pay for over 

80% of the all US expenditures for electricity 

[1], implying that even small errors can result in 

large expenses.  To protect their interests, the 

metering device is provided by the utility billing 

for the service.  Some owners install their own 

metering.  Sometimes this metering is used to 

double-check the utility billing, although 

typically a utility bill is accepted at face value.  

More frequently, customer metering is used to 

“sub-meter” loads to allocate energy costs by 

department or by type of load (e.g. HVAC, 

lighting, plug-loads, specialty machinery, etc.).  

By measuring energy by type of load and 

comparing it to expected or promised 

consumption, returns on investments made in 

energy saving solutions, such as lighting 

retrofits, can be verified.   These sub meters 

typically collect and report values needed to 

calculate an energy bill by including data such 

as present demand, power factor, and 

accumulated values such as energy or peak 

demand. 

However, meters are used for more than just 

energy billing or energy consumption 

verification.  Energy engineers examine energy 

consumption patterns and look for 

abnormalities that signal areas of concern.  

Energy engineers look for ways of reducing 

peak demand (kW or MW) and reducing energy 

consumption (kWh or MWh), with additional 

potential savings coming from reducing 

penalties from poor power factor or potentially 

poor power quality (harmonic distortion) which 

often plagues many older facilities. 

Savings opportunities change as energy 

consumption changes.  Energy consumption 

changes as work type or quantity changes or as 

seasonal weather changes.  Work type or 

quantity may change based on the hour of the 

day, the day of the week or the season of the 

year.  Seasonal weather data is available in real-

time, historical or predictive (up to several days 

in the future).   
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Consider a typical commercial facility that 

houses people, computers, lighting, HVAC and 

various miscellaneous loads.  Trends of power 

usage collected during 15-minute utility 

demand windows can be built on total facility 

load or individual loads.  Depending on the level 

of sub-metering installed, trends can be 

established for types of loads, building wings, 

floors, departments or any other location or 

application specific measurement.  By 

examining these trends, a pattern may emerge 

signaling unusual energy or power (demand) 

consumption.  

 

Figure 1 –Energy Monitor Pattern Tracking Software 

Figure 1 shows a screenshot of a computer 

program [2] that displays and normalizes power 

demand during each of the potential 96 15-

minute demand windows that occur during a 24 

hour period (96 = 24 hrs/day * 4 windows/hr).  

Warmer (redder) colors correspond to higher 

values of demand.  Focusing on the reddest of 

the red bars in Figure 1, July 17 quickly stands 

out. 

 

Figure 2 – July 17 detail 

Figure 2 displays a zoomed-in view of the 24-

hour period beginning at 00:00 hours on July 17 

and continuing to 23:59 hours on the same day.  

Note that the peak demand, month to date, is 

1048.05 kW (red arrow in Figure 2), a value that 

was 16.71% higher than the average demand 

for that day of the week at that hour of the day.  

Figure 3 shows that this monthly peak demand 

occurred during the 14:15 to 14:30 demand 

window. 

 

Figure 3 – Peak demand of 1048.05 kW recorded on Jul 17 
during the 14:15 to 14:30 demand window 

This information, while valuable, is somewhat 

like driving an automobile using the rear-view 

mirror.  Trends are shown, but what would be 

more useful would be some indication of 

problems ahead, preferably before they have 

been “run into”.  However, since the historical 

consumption by day, season, and time of the 

day is known, can this information help to 

predict if a new peak demand might occur later 

that same day? 

Consider the scenario as shown in Figure 4.  The 

x-axis corresponds to time of day (extreme left 

= 00:00 hours, and extreme right = 23:59 hours 

on 7/17).  The y-axis displays units of power 

scaled in units of kW, with the top of the blue 

trace representing the predicted value of 

demand for each of the 96 demand windows 

during that day. 



 

Figure 4 - Top red line is previous peak demand. Blue 
outline is predicted demand minute-by-minute for that 
day as of the beginning of the day (0:00 hours). 

This algorithm, using historical data sorted and 

filtered by day of week, season of the year and 

time of day, predicts the demand (power) 

requirements that should occur during any 

particular day, at any particular hour during that 

day.  In this particular facility, the majority of 

energy consumption tracks the operations 

which take place mostly between the hours of 5 

AM and 7 PM, 5 days a week. 

As mentioned earlier, a more valuable 

implementation of the algorithm would “look 

ahead”.  In this particular implementation, the 

predictor identifies a trend in the data and 

attempts to extrapolate the trend to the end of 

the day. A “Now Ratio” argument is used to 

balance between the short-term trends and the 

long-term trends. The closer to 0 it is, the more 

weight is placed on long-term trends. The closer 

to 1 it is, the more weight is placed on short-

term trends.  The prediction algorithm can be 

fine-tuned using one of several models: 

 Average Variance takes an average 

between short-term and long-term 

variances, shifting towards long-term as 

more data is received. 

 Linear Variance uses a Now Ratio to 

balance between short-term and long-

term variances. 

 Weighted Variance - same as Linear 

Variance, but attempts to reduce 

extreme predictions. 

 Linear Variance Reset - same as Linear 

Variance, but ignores short-term trends 

after large long-term trend changes. 

Notice in Figure 5 that a new thin orange line 

has appeared on the graph slightly above the 

light blue border.  This orange line represents 

an “update” of the predicted minute-by-minute 

demand for later in that day.  The update is due 

to early real-time data coming in higher than 

the previously predicted values.  This leads the 

algorithm to predict that demand values later in 

the day should be higher than predicted. 

 

Figure 5 – Red arrow marks the point where the orange 
line crosses red peak demand indicating a prediction that 
a new peak demand will be set that day.  Substantial 
advance notice is given as this prediction occurs at 3:15, 
but the predicted time for the crossing point is nearly 8 
hours later (11:00). 

Using this predictive capability, the algorithm 

predicts that a new, higher peak demand will be 

set at around 11:00 that day, or almost 8 hours 

into the future.  Normally, such advance 

warning should be plenty of time to take 

actions to prevent a new peak from occurring. 

In this particular facility, no action was taken, 

and unfortunately, the prediction turned out to 

be true. 



 

Figure 6 – At exactly the predicted time (11:00), the 
facility set a new peak demand 

At this site, demand was billed at $12/kW, 

meaning this excursion past the previous peak 

demand resulting in an additional $600 being 

added to that month’s energy bill.  In many 

utility rate structures, this new demand 

“ratchets”, resulting in “billed demand” in 

subsequent months exceeding “actual 

demand”, increasing the costliness of this 

excursion even further.  In facilities such as this, 

light levels could have been reduced, 

temperature setpoints could be have been 

increased, non-essential loads could have been 

switched off, or work could have been shifted. 

Based on the time of the year that this new 

peak demand was set, it is almost certain that 

higher outside temperatures placed greater 

demands on the HVAC system, resulting in a 

new peak demand.  To verify, the power data 

should be divided by (normalized) temperature 

(or more correctly cooling degree days).  Even 

for facilities that do not sub-meter HVAC and so 

do not have a broken out measurement for the 

percentage of electrical power consumed in the 

HVAC system, a simple ratio of total facility 

electrical energy consumed divided by the total 

degree-days over which that energy was 

consumed can provide a useful metric that can 

establish a baseline “efficiency” of the HVAC 

system.  This method works if the balance of 

the load can be predicted using one of the 

linear prediction methods supported by this 

software.  Large, random balance of system 

load swings color the data measured by the 

single service entrance meter and reduce the 

correlation of the HVAC load with the total load 

measured by the service entrance meter.  For 

applications without large random load swings 

in the balance of the facility loads, the service 

entrance meter normalized to outside 

temperature can be used as inputs to this 

simple linear prediction model.  When the ratio 

of cooling energy consumed per degree-day 

deviates from a linear trend line, this change 

can indicate degradation within the HVAC 

system. 

Outlier Detection 

Up to this point, the data has been used to 

identify opportunities to reduce coincident peak 

demand (multiple loads operated 

simultaneously).  However, recognizing patterns 

in energy consumption can also improve 

equipment reliability and safety by detecting 

changes in how equipment operates.  If 

equipment is operating at unusual times or for 

unusual lengths of time, does this indicate a 

change in work processes, perhaps leading to 

an inquiry of whether proper procedures 

(including safety) are being followed? 

For example while the data shown in Figure 6 

shows higher than expected energy 

consumption would it be correct to say that this 

consumption was unusual?  Possibly not.  Since 

this data was not normalized to weather, and 

since a large portion of building energy 

consumption is used by HVAC, it is entirely 

possible that the increased energy consumption 

was simply due to weather.  In this case, the 

new peak demand exceeded the previous peak 



demand by 6%, something that may by 

perfectly expected due to hotter weather. 

However, if the data were examined another 

way, would there be a way of detecting 

abnormal energy consumption?  One change to 

the algorithm would be to look for times and 

days when the percent difference between the 

real-time and the predicted loading deviated by 

some larger amount.  When those deviations 

are stacked ranked, the greatest deviation could 

be an indication to investigate further. 

 

Figure 7 – Same data as shown in Figure 1, except 
algorithm colors are based on deviation from mean 
calculated for that day, season and time.  Red 
corresponds to a real-time value that exceeds the 
predicted value by +3 standard deviations.  

In Figure 7 the same data is shown as in Figure 1 

except the color coding is changed based on 

magnitude of deviation of the real-time value 

from the calculated mean value for that 

particular day, time and season.  The brightest 

reds correspond to +3 standard deviations 

above mean and the darkest blue correspond to 

-3 standard deviations below mean. 

 

Figure 8 – In this installation, outliers, or unusual loads, 
don’t correspond to highest values. 

Figure 8 shows a zoomed in portion of the 

monthly demand data from Figure 7.   

The dark vertical bars in Figure 8 correspond to 

real-time values of demand that deviate little 

from predicted mean values.  The most 

interesting colors occur when more (or less) 

power is used at unexpected times.  For 

example, notice the large increase in 

consumption during late evening of July 23 (first 

red arrow in Figure 8).  The value wasn’t 

unusual in its magnitude, only in its magnitude 

for that time.  The next day, the software 

reported another unusually high pattern of 

consumption (for the time of day at least), as 

well as two instances of unusually low energy 

consumption.  Did a machine stop production? 

More Advanced Analysis 

While these methods are useful, they only hint 

at the type of analyses possible from post-

processing power, energy and temperature 

data. 

A recent patent [3] reveals another method of 

analyzing data collected from energy and 

temperature metering and using this data to 

predict normal or abnormal operation within 

cooling systems.  The problem solved by this 

patent is the equating the units of “energy” 

with those of “temperature” (e.g. comparing 

BTUs or calories or Joules with degrees C or K).  

In forced air or liquid-cooled system, common 

among electrical devices and within buildings 

themselves, more cooling is available from 

convection that from alternative methods of 

heat transfer (i.e. conduction, radiation or 

vaporization).   

  



The analysis begins with a reexamination of the 

equation for heat transfer by convection, given 

as:  

    ( ̇
 
)     (   (  )) ( 1 ) 

   

Where: 
 ̇ heat transfer rate via convection 
S Specific Heat of cooling media 

 Efficiency of heat exchanger 
F Flow rate of cooling fluid 
ave( distributed average operator1 

Grouping the potentially more difficult-to-

measure parameters together into a single 

parameter, denoted : 

       ( 2 ) 
 

The equation can be rewritten: 
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This equation implies that for a constant cooling 

fluid rate, constant heat exchanging efficiency, 

and constant specific heat of cooling media, the 

temperature rise of an enclosed space is 

directly proportional to the energy injected into 

this space. 

 

Figure 9 – Simplification of black body cooling model 
when conduction, radiation, and vaporization effects are 
ignored. 

                                                           
1
 The average value (mean) of each element 

enclosed within the parenthesis is calculated prior 
the calculation of the algebraic equation  

For any object with a stable temperature (and 

ignoring chemical or state change effects), the 

average amount of heat energy entering an 

object is equal to the average amount of heat 

energy leaving. 

It could be argued, validly, that  described in 

Equation ( 2 ) cannot be used as a proxy for 

cooling flow rate since it is affected by heat 

transfer efficiency.  Heat transfer efficiency 

could be affected by difficult to monitor 

parameters such as dust or dirt buildup, 

corrosion or even things such as spider webs 

built over heat exchangers or cooling fins. 

 
While this is certainly true, the important use of 

Equation ( 3 ) is to recognize is that anything 

that affects convective cooling will adjust the 

ratio of heat input divided by the change in 

temperature inside the object versus outside the 

object.  In fact, the value of using this insight is 

that by tracking energy input divided by delta T, 

changes in the cooling system are now visible.  

These changes can be seen long before 

temperature alarms are triggered. 

Application Example 

Reports published in 2010 claim that data 

centers were estimated to consume between 

1.1 and 1.5% (~200 billion kWh) of all the 

electrical energy generated world-wide.  This 

percentage has been growing over the last 

decade 2000-2010 [4].  With such large 

quantities of energy consumed, energy 

efficiency techniques targeting this application 

have the potential to save large amounts of 

energy consumption.  Measurement techniques 

such as The Green Grid’s PUE (Power Utilization 

Effectiveness) [5] have been developed to help 

data center operators benchmark the cooling 

efficiency of their facility against other sites. 

Reducing the amount of cooling energy 



consumed within data centers is a key step in 

lowering the overall energy bill. Unfortunately, 

while techniques such as PUE can be applied to 

entire data centers, this technique does not 

help locate where in the data center the cooling 

problems are occurring. 

First, it is important to understand that poor 

PUE implies that certain sections of the data 

center are “overcooled.”  Techniques such as 

computational fluid dynamics (CFD) can be used 

to calculate cooling air flows and temperatures 

across servers, but this technique requires 

computational horsepower, as well as 

additional sensor inputs not commonly 

available as continuous real-time signals in a 

building environment.  Typically CFDs are done 

as periodic (batch) operations.  However, in 

data centers, changes are occurring all the time.  

Server loads (and therefore exhausted heat) 

rise and fall.  New servers, storage and 

networking hardware are installed while other 

equipment may be de-commissioned.  

 

Figure 10 – CFD analysis models airflow volume and 
temperatures.  In data center environments this analysis 
is used to predict amount of cooling available at 
particular servers within a data center. 

When considering how a data center operator 

would keep track of cooling system efficiency, 

what is interesting to note is that the 

calculation of epsilon () as shown in Equation ( 

2 ) provides a proxy of the cooling system 

effectiveness at any point within a facility - at 

least at any point where electrical energy and 

temperature are measured.  In a data center, 

this information would be available at a server 

or within a data rack housing groups of servers.  

If that rack included branch circuit metering of 

total energy consumption for all loads within 

the rack and if temperature could be collected 

within that same rack, all the information 

necessary to calculate  would be available.  An 

example of how this might be installed is shown 

in Figure 11.   Trending  as shown in Figure 12 

could then be used to detect degradations in 

the cooling system, since declining  indicates a 

declining “efficiency” in cooling that rack.  

Combined with PUE data, the data center 

operator has a tool to locate where the cooling 

inefficiency is occurring and take action to 

correct the problem.  The problem being, 

typically, that there is too much air flow at that 

particular rack. 

 
Figure 11 – Sensors required to calculate epsilon (), the 
measurement described in the text that emulates some 
of the data provided by a CFD analysis. 



 
Figure 12 – Changes in  signal systemic changes in 
convective heat transfer within the system 

 
Conclusions 

Using knowledge gained from the field of 

machine diagnostics, electrical equipment 

within facilities can now report not only on how 

much energy is consumed, but also identify 

anomalous energy consumption.  Using 

knowledge of proper machine and/or facility 

operation, malfunctions within particular 

subsystems can be detected.  An example given 

in this paper was a malfunctioning cooling 

system in a data center. Degraded cooling 

systems potentially waste energy, while the 

opposite problem of insufficient cooling can 

reduce equipment reliability or life (due to 

effects predicted by the Arrhenius equation).  

Premature failure of equipment not only 

increases costs and decreases the facility’s 

ability to complete its mission, but depending 

on the type of failure, safety of the facility or 

persons working within the facility could be 

affected.  Examples of electrical equipment 

failure causing safety problems include 

healthcare facilities, aircraft electrical systems, 

security systems, chemical processing 

equipment and boiler controls (e.g. power 

plants).  Gaining this level insight into electric 

system operations for commercial and 

industrial operations, through advanced 

diagnostics and condition monitoring, is 

paramount in universal efforts towards 

achieving higher levels of energy efficiency. 
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