

Lessons Learned – Key Characteristics of a Microgrid

Steve Pullins, President

Horizon Energy Group

September 2012

The future requires a shift from passive grid management to active grid management...and the future is here.

CHALLENGING THE PARADIGM

Old Paradigms Challenged

- US average outage duration is 120 minutes and getting worse; rest of industrialized world is < 10 minutes and getting better
- "Build mentality" has yielded ≤ 45% capital asset utilization (generation, transmission, distribution) and getting worse...at the same time outage duration and frequency is increasing
- Top down electric power system is not meeting the challenge. Consumers are embracing distributed resources (> 5 GW/year) and participation in peak reduction programs (DR, PTR, CPP, etc)

Decreasing Grid Reliability

OUTAGES AFFECTING MORE THAN 50 000 CUSTOMERS

Source: Dr. S. Massoud Amin, IEEE Spectrum, January 2011

at ILLINOIS INSTITUTE OF TECHNOLOGY

Power & Energy Society®

Decreasing Capital Asset Utilization

To deliver 1 MW to a customer, we are building and paying for 2.2 MW generation and transmission.

A long-term increasing generation capacity with a long-term decreasing capacity factor is an unsustainable business model.

0.0%

C&I DG Installations since 2004 (MW)

Power & Energy Society®

Dispatching Demand Side on the Rise

Demand Side Participation in Capacity Market

Demand Side Participation in the PJM Capacity Market

Source: PJM Interconnection

LESSONS...SO FAR

Utility Distribution Microgrid Uses

- Somewhat remote communities
 - Highly concentrated PV communities
 - Address variability of high renewables targets
- Custom power offerings tailored to customers with specific economic, reliability, and emissions objectives
- Active management to drive improved reliability
- Local resource mix hedge to a single grid supply
 - Municipals and Cooperatives

Future Distribution Architecture

Lessons - Microgrid Characteristics

- Most interest is behind the meter
- Economically viable
 - Commercial & Industrial consumers 4 to 40 MW
 - University campuses 2 to 40 MW
- Significantly improves on-site reliability; a MUST
- All solutions (to date) reduce emissions footprint, but not the major objective
- All solutions (to date) include energy storage and 3 to 6 other resource types
- All solutions (to date) include integration to building controls and price-driven load management
- Most selected Scenario: MaxSavings
 - 80% to 86% self-generation, rest from grid
 - Always grid connected
 - Sales to grid: zero to minimal

Lessons on Typical Project

- Design and Integrate Multiple Resources
 - DG, PV, Wind, CHP, FC
 - Utility-scale and distributed storage
- Automate Distribution
- Grid Interconnection and Islanding
- Price-Driven Load Management
 - Intelligent load management
 - Demand response
- Multiple Revenue Streams
 - Primary energy and demand
 - Utility peak load programs
 - Utility ancillary services

Lessons on Optimization Design

- Industry-leading converged energy and financial model
- Commercial and industrial businesses, and university campuses are focused and looking for solutions
- Four main scenarios
 - MaxSavings
 - MaxRenewables
 - MaxDiversity
 - Grid Independence
- Incorporate federal, state, and utility tax credits and incentives

Microgrid vs Traditional Supplier Roles

Criteria	MEA/Shell	IIT/Exelon	Calpine ⁸	NextEra ⁹	US Avg.
Source Energy Intensity (mmBTU/MWh)	3.8	6.6	7.3	8.0	9.1
CO ₂ Intensity (lbs/MWh)	610	0	870	650	1330
SO ₂ Intensity (lbs/MWh)	0.3	0	0.0044	0.44	3.0
NOx Intensity (lbs/MWh)	0.3	0	0.12	0.33	1.4
Water Consumption (gallons/MWh)	>400*	240*	100	230	>400*
Solid Waste Recycled (waste recycled/total waste)	16%*	60%	0%*	28%*	65%
Renewable Energy Credits (bonus points)	6	0	0	0	N/A
PPI Rating Score (max 100)	91	79	68	64	41
Percent Renewable	60%	40%	6%	13%	9%

Table 3, Assessing
Power Supply:
Environment and
Energy Efficiency,
Perfect Power Institute,
July 2012

*Numbers estimated from available data

Notes: Results adjusted for average system losses. MEA is the Marin Energy Authority contracting with Shell Energy. IIT is the Illinois Institute of Technology contracting with Exelon.

Calpine (2010). Annual Report: A Generation Ahead, Today. www.calpine.com/docs/CPN_Annual_Report.pdf

NextEra Energy (2011). Sustainability Report 2011. http://www.nexteraenergy.com/pdf/sustain-report.pdf

Power & Energy Society

Case Study: 11 MW Shipyard

Shipyard will save ~\$23 million in the first 10 years of the microgrid operations.

Case Study: 3.5 MW Engineering Center

The campus will save almost \$10M in the first 10 years of the microgrid operations

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Case Study: What if ConEd?

Compare 500 MW over 20 years	ConEd BAU	ConEd Microgrid	
Amount of microgrids		500 MW	
Reliability (avg customer outage minutes/year)	120	12	
Power Plant Capacity Factor	45.3%	83.2%	
Emissions (NO _X , SO _X , CO ₂)		532,727 Tons less	
Consumer Savings		\$2,091 M higher	
Distr. Marginal Cost	\$600/kW-year	<\$250/kW-year	

Case Study based data from an 11 MW industrial microgrid design.

Conclusions

- Must move distribution network from passive to active management
- Most microgrid action is behind the meter
- Business and university consumers are motivated
- For the consumer, well developed microgrids are more capital efficient, energy efficient, and reliable than traditional service

Thank you!

Questions?

Contact info:
Steve Pullins
spullins@horizonenrgygroup.com
865.300.7395
www.horizonenergygroup.com

