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About the Lecturer… 

• Vladimir Koritarov is Deputy Director of the Center 
for Energy, Environmental, and Economic Systems 
Analysis at Argonne National Laboratory 

• Before joining Argonne in 1991, worked 8 years as 
power system planner in the Union of Electric Power 
Industry of Yugoslavia (JUGEL) 

• Extensive experience in modeling and simulation of 
energy and power systems in the U.S. and abroad 
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With the Advance of Renewable Energy Sources, Energy Storage Is 
Becoming Increasingly Important 

• Energy storage is not a new concept for electric utilities 

• Although extremely desirable, wider deployment of energy storage has 
been limited by the economics/costs and available locations 

• Pumped-storage hydro (PSH), large hydro reservoirs, and a few pilot 
compressed air energy storage (CAES) plants were the only way to store 
energy 

• Small quantities of electricity were also possible to store in batteries and 
capacitors 

• Large-scale implementation of energy storage (both system and 
distributed) is considered to be the key for enabling higher penetration 
(e.g., >20%) of variable generation sources, such as wind and solar 

• Energy storage is also expected to contribute to more efficient and reliable 
grid operation, as well as to reduced emissions from the power sector 



Drivers for Energy Storage: Recent Growth in Wind and Solar 
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Source:  AWEA 2013 

Wind capacity is now over 60 GW Solar PV is now about 7.7 GW 
Source: SEIA 2013 

Source: Pike Research 2012 

Worldwide energy 

storage projects  

by decade 
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There are a Variety of Energy Storage Applications 

• System storage (e.g., PSH, CAES, large-scale 
battery storage 

– Currently 127 GW of PSH in the world, of which: 

• 40 GW in European Union 

• 22 GW in the United States 

– Many utilities are building new PSH capacity 

• 1,200 MW Alto Tamega in Portugal, 

• 760 MW Venda Nova 3 in Portugal, 

• 852 MW La Muella 2 in Spain, etc. 

• Renewable energy support (e.g., energy 
storage combined with wind or solar) 

• Distributed energy storage (demand-side 
storage, customer installations, PHEV & EV 
batteries, etc.) 

Source: Wanxiang 2011 



Applications of Energy Storage Systems on the Grid 
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Source: DOE Electricity Advisory Committee - 2012 Storage Report 
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Main Categories of Storage Technologies 
• Mechanical 

– Pumped-Storage Hydro 

– Compressed air energy storage (surface and underground) 

– Flywheels 

• Electrochemical 

– Lead-acid (L/A) batteries 

• Flooded L/A batteries 

• Valve-regulated lead-acid  (VRLA) batteries 

– Sodium-sulfur (NaS) batteries 

– Lithium-ion (Li-ion) batteries 

– Flow batteries 

• Sodium bromide sodium polysulfide 

• Zinc bromine (Zn/Br) 

• Vanadium-redox (V-redox) 

– Super-capacitors 

– Superconducting magnetic energy storage (SMES)  

– Hydrogen (as storage medium) 

• Thermal 

– Molten salt, sensible heat, phase change materials, etc. 



2011 Worldwide Grid-Scale Energy Storage Capacity 
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Source: U.S. DOE EAC Energy Storage Report 2011 



2011 Energy Storage Capacity in U.S. 

Storage Technology Type Capacity (MW) 

Pumped Storage Hydro 22,000 

Compressed Air 115 

Lithium-ion Batteries 54 

Flywheels 28 

Nickel Cadmium Batteries 26 

Sodium Sulfur Batteries 18 

Other (Flow Batteries, Lead Acid) 10 

Thermal Peak Shaving (Ice Storage) 1,000 

TOTAL 23,251 
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Source: U.S. DOE EAC Energy Storage Report 2011 



Pumped Storage Hydro 

• Mature commercial  technology 

• Large capacity up to 1-2 GW 

• Large energy storage (8-10 hours  
or more) 

• Fixed and adjustable speed units 
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Source: Electric Power Group 



Compressed-Air Energy Storage 
• Two existing pilot projects: 

– Huntorf, Germany (290 MW) built in 1978 

– McIntosh, Alabama (110 MW) in 1991 

• Compressed air is stored under pressure (>1000 psi) underground: 

– Salt domes,  

– Aquifers,  

– Depleted gas/oil fields, 

– Mined caverns, etc. 

• Compressed air is used to power 
combustion turbines 

• Increased efficiency of electricity 
generation compared to regular CTs 

• Lower capital costs than pumped  
hydro storage 

• Above-ground CAES more expensive 
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Photo by CAES Development Company 



Batteries 

• Various chemistries 

•  Most applications in Japan 
(typically NaS batteries) 
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Source: VRB Power Systems 

Photo by AEP 

Source: PIKE Research 2012 



Flywheels 
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Photo by Beacon Power 

2-MW flywheel storage 

 in ISO-NE  
(Source: Beacon Power) 

20-MW flywheel plant in Stephentown, NY 
(Source: U.S. DOE) 



New Technologies: Non-Aqueous Flow Battery 

• A new type of flow-battery for large-scale utility applications 
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Simplified schematic of a flow battery used for load 

leveling. Shown for generic species A and B with 

lithium ions as the ion exchanged across the 

separator (other cations or anions could be used 

instead).   If 1 Molar solutions are assumed, each 

storage tank would be ~11,000 m3 (30-m diameter 

by 15-m high) for a 50 MW/600 MWh system and 

could easily be sited on five acres. 

50 MW 

600 MWh 
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Requirements for Energy Storage 

• Energy density 

• High power output 

• Cycle efficiency 

• Cycling capability 

• Operating lifetime 

• Capital cost 

Source: Electricity Storage Association 

(www.electricitystorage.org) 
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Cycle Efficiency of Energy Storage Technologies 
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Size and Weight of Energy Storage 



Cost and Performance Characteristics of Energy 
Storage Technologies 
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Source: IRENA, May 2012 
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Energy Storage Can Provide Services at all Levels of the 
Power System Value Chain 

• Generating capacity 

– Peaking capacity (e.g., pumped-hydro storage) 

• Energy arbitrage 

– Load shifting and energy management (load-leveling, 
time-shift, price arbitrage) 

• Ancillary services 

– Frequency regulation  

– Operating reserves (spinning, non-spinning, 
supplemental) 

– Voltage support 

• Grid system reliability 

– Transmission stability support 

– Transmission congestion relief 

– T&D upgrade deferral 

– Substation backup power 
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Energy Storage Can Provide Services at all Levels of the 
Power System Value Chain (cont’d) 

• Integration of variable energy resources (VER) 

– Capacity firming 

– Renewable energy time-shift 

– Renewable energy integration (power quality, 
ramping, and flexibility reserves) 

• Utility customer 

– Time-of-use energy cost management 

– Capacity charge management 

– Improved power quality and reliability 

• Environmental benefits* 

– Reduced fossil fuel consumption 

– Reduced environmental emissions  

 

* Depending on the plant mix in the system 



21 

Operating Characteristics of Energy Storage Technologies 
Determine their Suitability for Different Applications 

• Flywheels, super-capacitors, SMES, and other storage 
technologies with the short-term power output 
(minute time scale) 

– Regulation service 

– Spinning reserve, etc. 

 

• NaS batteries, flow batteries, hydrogen fuel cells, 
CAES, pumped storage can provide several hours of 
full capacity:  

– Load shifting / energy management 

– Electricity generation 

– T&D deferral, etc. 



Technology Characteristics and Applications 
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Source: ESA 
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Positioning of Energy Storage for Utility Applications 

 

Source: EPRI 2010 



Some Energy Storage Projects in U.S. Utilities 
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Source: EPRI 2010 



Issued FERC Permits for New PSH in the U.S. 
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New DOE Database Tracks Energy Storage Projects 

Source: http://www.energystorageexchange.org 

http://www.energystorageexchange.org/


Value of Energy Storage in Utility Systems 

Three main components:  

 

• Energy/price arbitrage (wholesale energy market) 

 

• Ancillary services (reserves market) 

 

• Portfolio effects (lower system operating costs, 
better integration of VER, reduced cycling of thermal 
units, increased system reliability, etc.) 
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Energy/Price Arbitrage 
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Pumping/Charging 

Generating/Discharging 

• Energy storage is net consumer of energy 

• Economic operation is based on price differential between 
peak and off-peak prices/costs 

𝑬𝒈 = 𝜼 × 𝑬𝒑 𝑬𝒈 

𝑬𝒑 



Renewable Generation Energy Management 
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Firming up and time 

shifting of solar generation 

Source: FIAMM 2012 



Energy Storage Can Also Provide Valuable Ancillary Services 

• Ancillary services are those necessary to support the generation, 
transmission, and distribution of electricity from producers to end-
users. 

 

• In this context, ancillary services deal primarily with: 
– Control of power generation 

– Grid stabilization, and  

– Integration of variable energy resources (VER), such as wind and solar 

 

• Energy storage is very fast and flexible, which makes it ideal for 
provision of many ancillary services 
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Why Do We Need Ancillary Services? 
• System operators in electric utilities or ISO/RTOs perform two key 

tasks: 
– Balance the system generation and load in near-real-time 

– Maintain voltages and power flows through transmission grid within the 
operating criteria 

 

• To perform these tasks, the system operator needs ancillary services 

 

• Ancillary services provide for secure and reliable system operation 
 

• Ancillary services are used by the “power system”, not electricity 
consumers 
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Main Types of Ancillary Services 

• Frequency Regulation (seconds to minutes) – Adjusts power output of generating 
unit to oppose small deviations in system frequency, as instructed by Automatic 
Generation Control (AGC) 

• Load following (minutes to hours) – Adjusts generating unit power output or load 
to follow longer-term (hourly) changes in system demand (ramping requirements)  

• Voltage control – provide voltage support for the system 

• Spinning reserve (full response in 10 minutes) – rapid increase in generation or 
reduction in load in response to system contingencies (e.g., unit outages) 

• Non-spinning reserve (full response in 10 minutes)– rapid start and delivery of 
power of a unit not synchronized to the system in response to system contingencies 

• Supplemental (response in 10-30 minutes) reserve – Generating units or reduction 
in load dispatched to replace those providing spinning reserve 

• Black start capability – To restart the power system after a blackout 
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Regulation and Load Following 

• Regulation is a zero-energy service that compensates minute-to-minute 
fluctuations in system load and generation of variable energy resources 

• Load following compensates for slower and predictable changes in load from hour 
to hour  
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Frequency Regulation Is About Balancing 
Electricity Supply and Demand 

• Any power grid during operation must always maintain a balance between the supply and 
demand 

• If the demand increases faster than the supply, the system frequency tends to decrease (and 
vice versa) 

• The goal of system operators is to keep the system frequency within a narrow range around  
60 Hz (50 Hz in Europe) 
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SUPPLY DEMAND 

Hz 

60 61 59 



Frequency in Power Systems Constantly 
Fluctuates 
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In case of generating unit 
or transmission outages, 
the frequency drop may 
be significant (Ireland, 
11/22/2008) 



Energy Storage Provides Fast Response 
 in Case of Unit Outages 
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Energy Storage Provides Operating Reserves 
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Source: PJM, 2012 



Grid Control Issues and Timeframes 
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Grid Integration of Renewable Energy Sources 

• Wind generation growth in Midwest ISO:  10 times between 2006 and 2011 

• Wind variability creates operational problems: 

– Requires manual curtailments (wind cannot be dispatched down automatically during congestion 
events) 

– Surplus wind generation during light load periods (may cause de-committing of conventional 
generating units) 

– Requires larger operating reserves (costs more to operate the system) 

39 
Source: MISO 2012 
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Storage can Reduce Curtailments of RE 

• Curtailments of wind generation in MISO (data as of December 2011) 
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Source, MISO, 2012. 
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Large Wind Integration will Require Significant Use of 
Energy Storage 

• Energy storage, either as system storage or 
coupled with wind farms, would provide for: 

– Firming of VER capacity 

– Time-shifting of VER electricity generation 

– Reduced ramping of conventional units 

– Lower reserve requirements, etc. 

 

• Questions: 

– What is the optimal amount of storage? 

– What type of storage is best for use with wind 
farms? 

– System storage or paired with VER projects? 

 

 

Source: AES Energy Storage LLC 
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Advanced Wind Forecasting Helps Reduce Uncertainty, 
Energy Storage Will Help Manage Variability 

 

Source: Iberdrola, 2009 

Current forecast tools do reasonably well 

 

Mean absolute error is low (9.3%) 

 

Forecasting ramps still an issue 



Hydropower Plays Significant Role in Integration of 
Variable Generation Resources 

• Hydropower plants, both conventional hydro (CH) and pumped-storage hydro (PSH) plants, 
are well-suited to provide a number of ancillary services 

 

• CH and PSH plants are characterized by fast and flexible operation with quick starts and 
excellent ramping capabilities  

– often, the plant operation is constrained not by technical limits of the equipment, but 
by environmental considerations 

 

• In the pumping mode, PSH plants create system load which can be used to accommodate 
excess generation of VER and reduce their curtailments  

 

• In contrast to thermal generating units, CH and PSH plants provide ancillary services at much 
lower cost  

 



PSH Plants can Provide a Variety of Services 
• Load shifting (energy arbitrage) 

– Increases efficiency of system operation by: 
• Increasing the generation of base load units 

• Reduces the operation of expensive peaking units 

• Contingency reserve (spinning and non-spinning) 

– Provides large amount of quick contingency reserve (e.g., for the 
outages of large nuclear and coal units) 

• Regulation reserve 

–  Helps maintain system frequency at a narrow band around nominal 
system frequency by balancing supply and demand 

• Load following 

–  Provides a quick-ramping capacity 

• Energy imbalance reduction 

– Compensates the variability of wind and solar power 

 



New Adjustable Speed PSH Provide Even More Flexibility 

• Adjustable speed PSH are doubly fed induction machines (DFIM) 

• The rotors of DFIM drives are equipped with three-phase windings and fed via 
frequency converter 

• The actual mechanical speed is the result of superposition of both rotor and stator 
rotating magnetic fields and is controlled by frequency converter 

• The units can vary the speed (typically up to 10% around the synchronous speed) 

• It is possible to adjust the speed to actual water head, which increases turbine 
efficiency 

• Active and reactive power can be controlled electronically and separately  

• The units are able to operate in partial load pumping mode 



Adjustable Speed Pumped Storage Hydro Units Employing 
Doubly-Fed Induction Machines 

• Basics of DFIM operation: 

– The stator of the machine is connected to the system. 

– The rotor of the machine is connected to the machine terminals through a 
power converter. 

– The power converter can control the voltage, current, and frequency in the rotor 
circuit, and hence the machine power and reactive power 
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Ternary Pumped Storage Units 
• A ternary pumped storage system consists of a separate turbine and pump 

on a single shaft with an electric machine that can operate as either a 
generator or motor 

• The ternary plant can simultaneously operate both the pump and turbine, 
referred to as a “hydraulic short circuit”  

• This ability provides for greater flexibility in plant’s operation 

Source: F. Spitzer and G. Penninger, Pumped Storage Power Plants—Different Solutions for 

Improved Ancillary Services through Rapid Response to Power Needs, HydroVision 2008, July 2008. 
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Ternary PSH Technology 
• Kops 2 PSH plant (3x150 MW) in Austria has implemented ternary pump-turbine 

arrangement 

• Turbine and pump are connected with a mechanical clutch (pump can be separated 
during the generation mode to increase efficiency) 

• During the pumping, the power taken from the grid can be supplemented by the 
power produced by the hydro turbine (“hydraulic short circuit”) 

• This provides for flexibility in regulating the pumping power needs from the grid 

48 Source: Illwerke VKW Group, 2009 



Some Projections Show Substantial Market for 
Energy Storage Technologies 

• Pike Research forecasts that total energy storage market will grow from $1.5B in 
2010 to about $35B in 10 years (that’s 37% average annual growth rate!) 
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Potential Market Barriers to Widespread 
Storage Deployment 

• Cost of the technology 

• Risk of cost recovery 

• Lack of adequate market rules  

• Understanding the role and benefits of storage 

• How to assess the value of storage in a given 
application 

• Inadequate planning and operation (methods, 
training, software tools, etc.) 
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R&D Needs for Battery Storage 
Technologies 

• Increase power and energy densities 

 

• Extend lifetime and cycle-life 

 

• Decrease charge-discharge cycle times 

 

• Ensure safe operation 

 

• Reduce costs  
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In Conclusion, Energy Storage is the Key for Large-Scale 
Integration of Renewable and other Variable Sources 

• Energy storage provides opportunity for better management of variable resources: 

– Capacity firming 

– Renewable energy time-shift 

– Renewable energy integration (regulation, ramping, load following, operational 
reserves) 

• Energy storage will improve power system efficiency, stability, and reliability  

• Energy storage can provide valuable ancillary services 

– With large ramp-up in wind, the need for regulation and spinning reserve will increase 

– The importance of storage, both system and distributed, will also increase 

• On the consumer side, energy storage provides opportunity for: 

– Price arbitrage 

– Improved power quality and reliability of supply 

• Energy storage will also facilitate better use and functionality of smart grid technologies 



Questions? 

Thank You! 
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